情報学部 | 菅沼ホーム | SE目次 | 索引 |
a + (ーa) = 0
c = k1a + k2b
a×b = [a2b3-a3b2 a3b1-a1b3 a1b2-a2b1]T
a×b = [0 0 a1b2-a2b1]T
c・(a×b)
a1b2c3 + a2b3c1 + a3b1c2 - a1b3c2 - a2b1c3 - a3b2c1
2x + y + z = 7 x + y - z = 2 3x + 2y - 2z = 5
Ax = b
x = A-1b
A0 = I, A1 = A, A2 = AA, A3 = A2A,・・・
ak = ciai + cjaj + ・・・ + cmam
として表現可能なとき,行列式の値は 0 になる.
|A| = ar1Ar1 + ar2Ar2 + ・・・ + arnArn 第 r 行で展開 = (-1)r+1ar1Mr1 + (-1)r+2ar2Mr2 + ・・・ + (-1)r+narnMrn = a1sA1s + a2sA2s + ・・・ + ansAns 第 s 列で展開 = (-1)1+sa1sM1s + (-1)2+sa2sM2s + ・・・ + (-1)n+sansMns
= a1b2c3 + a2b3c1 + a3b1c2 - a1b3c2 - a2b1c3 - a3b2c1
2x + y + z = 7 x + y - z = 2 3x + 2y - 2z = 5
Ax = b
x = A-1b
|A| ≠ 0 ⇔ Rank A = n
f(V) = { f(x) | x ∈ V }
y = f(x) = Ax ( x ∈ Rn,y ∈ Rm )
Ax + t
a - 2b = 0 a - 2b = 0
3a + b + c = 3a b = 3b 2b + 2c = 3c
3a + b + c = 2a b = 2b 2b + 2c = 2c
3a + b + c = a b = b 2b + 2c = c
xTAx = a11x2 + 2 a12xy + a22y2 = c > 0, ただし,x = [x y]T
x2 + 2y2 = 1
x'TAx' = (Px)TAPx = xTPTAPx = 1
情報学部 | 菅沼ホーム | SE目次 | 索引 |