情報学部 | 菅沼ホーム | 目次 | 索引 |
/****************************/ /* 巡回セールスマン問題 */ /* (分割法) */ /* coded by Y.Suganuma */ /****************************/ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <time.h> #include "MT.h" float kyori(int, int *, float **); /*************************/ /* クラスPartitionの定義 */ /*************************/ class Partition { float **city; //都市の位置データ float **city_i; //都市の位置データ(作業領域) float *p_x; // x軸の分割点 float *p_y; // y軸の分割点 float **rg; // 都市間の距離 long seed; // 乱数の初期値 int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 int max_try; // 最大試行回数 int n_city; // 都市の数 int **n_seq; // 各領域の都市数 int **n_seq1; // 各領域の都市数(ワーク) int n_p_x; // x軸方向の分割数 int n_p_y; // y軸方向の分割数 int ***seq; // 経路 int ***seq1; // 経路(ワーク) int *seq_w1; // 作業領域 int *seq_w2; // 作業領域 int neib; // 近傍(2 or 3) int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 int **state; // 領域結合用ワーク char *i_file; // 入力ファイル名 public: int Max; // 最適経路の長さ int out_m; // 出力方法 // =-1 : ディスプレイ(経路長だけ) // =0 : ディスプレイ // =1 : ファイル // =2 : ファイル(経路長だけ) char o_file[100]; // 出力ファイル名 Partition(char *); // コンストラクタ Partition(); // コンストラクタ ~Partition(); // デストラクタ void Optimize(long); // 最適化の実行 void Output(int, int); // 出力 int Connect(); // 分割したものを一つにまとめる }; /*************************/ /* クラスIterationの定義 */ /*************************/ class Iteration { float **city; //都市の位置データ float **rg; // 都市間の距離 int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 int max_try; // 最大試行回数 int n_city; // 都市の数 int out_d; // 表示間隔 int *seq_w1; // 都市を訪れる順序(ワーク) int *seq_w2; // 都市を訪れる順序(ワーク) int *seq_w3; // 都市を訪れる順序(ワーク) int *seq_w4; // 都市を訪れる順序(ワーク) int *seq_w5; // 都市を訪れる順序(ワーク) int neib; // 近傍(2 or 3) int out_lvl; // 出力レベル // =0 : 最終出力だけ // n>0 : n世代毎に出力(負の時はファイル) int out_m; // 出力方法 // =-1 : 出力しない // =0 : すべてを出力 // =1 : 評価値だけを出力(最終結果だけはすべてを出力) int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 char o_file[100]; // 出力ファイル名 public: int *seq; // 都市を訪れる順序 Iteration (int, int, int, int, int, int, int, int, int, char *, float **);// コンストラクタ ~Iteration(); // デストラクタ int Optimize(); // 最適化の実行 int Change(double *); // 改善 void Output(int, int, double); // 出力 }; /**************************/ /* コンストラクタ */ /* name : ファイル名 */ /**************************/ Partition::Partition(char *name) { double x, y; float max_x, max_y, min_x, min_y, s_x, s_y; int i1, i2, i3, max = 0, n; FILE *in; // ファイルのオープン i_file = name; in = fopen(name, "r"); if (in == NULL) { printf("***error データファイル名が不適当\n"); exit(1); } // 基本データ fscanf(in, "%*s %d %*s %d %*s %d %*s %d", &n_city, &sel, &neib, &seisu); fscanf(in, "%*s %d %*s %s", &out_m, o_file); fscanf(in, "%*s %*s %d %*s %d %*s %d", &n_p_x, &n_p_y, &max_try); if (neib < 0) { neib = -neib; fix = 0; } else fix = 1; // 都市の位置データ city = new float * [n_city]; for (i1 = 0; i1 < n_city; i1++) { city[i1] = new float [2]; fscanf(in, "%f %f", &city[i1][0], &city[i1][1]); } // ファイルのクローズ fclose(in); // 距離テーブルの作成 rg = new float * [n_city]; for (i1 = 0; i1 < n_city; i1++) { rg[i1] = new float [n_city]; for (i2 = i1+1; i2 < n_city; i2++) { x = city[i2][0] - city[i1][0]; y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (i1 = 1; i1 < n_city; i1++) { for (i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 作業領域 state = new int * [n_p_y]; n_seq = new int * [n_p_y]; n_seq1 = new int * [n_p_y]; for (i1 = 0; i1 < n_p_y; i1++) { n_seq[i1] = new int [n_p_x]; n_seq1[i1] = new int [n_p_x]; state[i1] = new int [n_p_x]; } seq = new int ** [n_p_y]; seq1 = new int ** [n_p_y]; for (i1 = 0; i1 < n_p_y; i1++) { seq[i1] = new int * [n_p_x]; seq1[i1] = new int * [n_p_x]; } seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; p_x = new float [n_p_x]; p_y = new float [n_p_y]; // 都市の分割 for (i1 = 0; i1 < n_city; i1++) seq_w1[i1] = 0; min_x = city[0][0]; max_x = city[0][0]; min_y = city[0][1]; max_y = city[0][1]; for (i1 = 1; i1 < n_city; i1++) { if (city[i1][0] < min_x) min_x = city[i1][0]; else { if (city[i1][0] > max_x) max_x = city[i1][0]; } if (city[i1][1] < min_y) min_y = city[i1][1]; else { if (city[i1][1] > max_y) max_y = city[i1][1]; } } s_x = (max_x - min_x) / n_p_x; p_x[0] = min_x + s_x; p_x[n_p_x-1] = max_x; for (i1 = 1; i1 < n_p_x-1; i1++) p_x[i1] = p_x[0] + i1 * s_x; s_y = (max_y - min_y) / n_p_y; p_y[0] = min_y + s_y; p_y[n_p_y-1] = max_y; for (i1 = 1; i1 < n_p_y-1; i1++) p_y[i1] = p_y[0] + i1 * s_y; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { n = 0; for (i3 = 0; i3 < n_city; i3++) { if (seq_w1[i3] == 0) { if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) { seq_w1[i3] = 1; seq_w2[n] = i3; n++; } } } n_seq1[i1][i2] = n; if (n > 0) { seq[i1][i2] = new int [n_city]; seq1[i1][i2] = new int [n_city]; for (i3 = 0; i3 < n; i3++) seq1[i1][i2][i3] = seq_w2[i3]; if (n > max) max = n; } } } // 作業領域 printf("最大都市数 %d\n", max); city_i = new float * [max]; for (i1 = 0; i1 < max; i1++) city_i[i1] = new float [2]; } /******************/ /* コンストラクタ */ /******************/ Partition::Partition() { n_city = 0; } /****************/ /* デストラクタ */ /****************/ Partition::~Partition() { int i1, i2; if (n_city > 0) { for (i1 = 0; i1 < n_city; i1++) { delete [] rg[i1]; delete [] city[i1]; delete [] city_i[i1]; } delete [] rg; delete [] city; delete [] city_i; for (i1 = 0; i1 < n_p_y; i1++) delete [] state[i1]; delete [] state; delete [] seq_w1; delete [] seq_w2; delete [] p_x; delete [] p_y; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (n_seq1[i1][i2] > 0) { delete [] seq[i1][i2]; delete [] seq1[i1][i2]; } } delete [] seq[i1]; delete [] seq1[i1]; } delete [] seq; delete [] seq1; for (i1 = 0; i1 < n_p_y; i1++) { delete [] n_seq[i1]; delete [] n_seq1[i1]; } delete [] n_seq; delete [] n_seq1; } } /******************************/ /* 最適化の実行 */ /* seed_i : 乱数の初期値 */ /******************************/ void Partition::Optimize(long seed_i) { int i1, i2, i3, k, max, nb, r = 0; Iteration *it; // 初期設定 seed = seed_i; init_genrand(seed); // 分割数と開始時間の出力 if (out_m > 0) Output(0, r); for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { n_seq[i1][i2] = n_seq1[i1][i2]; for (i3 = 0; i3 < n_seq1[i1][i2]; i3++) seq[i1][i2][i3] = seq1[i1][i2][i3]; } } // 分割毎の最適化 for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (n_seq[i1][i2] > 3) { // 近傍の大きさ nb = (n_seq[i1][i2] > 3) ? neib : 2; // 都市位置データの設定 for (i3 = 0; i3 < n_seq[i1][i2]; i3++) { k = seq[i1][i2][i3]; city_i[i3][0] = city[k][0]; city_i[i3][1] = city[k][1]; } // 最適化 it = new Iteration (n_seq[i1][i2], max_try, seisu, sel, nb, fix, 0, -1, 0, o_file, city_i); max = it->Optimize(); // 結果の保存 for (i3 = 0; i3 < n_seq[i1][i2]; i3++) { k = it->seq[i3]; seq_w1[i3] = seq[i1][i2][k]; } for (i3 = 0; i3 < n_seq[i1][i2]; i3++) seq[i1][i2][i3] = seq_w1[i3]; // 出力 r = (seisu > -2) ? (int)kyori(n_seq[i1][i2], seq[i1][i2], rg) : (int)(kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5); printf(" y %d x %d n_city %d range %d (trial %d)\n", i1+1, i2+1, n_seq[i1][i2], r, max); } } } // 経路の接続 r = Connect(); // 出力 Output(n_city, r); } /***********************/ /* 出力 */ /* n_c : 都市の数 */ /* r : 距離 */ /***********************/ void Partition::Output(int n_c, int r) { int i1, k = 0, n; char *now; time_t aclock; FILE *out; if (out_m <= 0) { out = stdout; fprintf(out, "距離 %d\n", r); getchar(); } else { time(&aclock); now = ctime(&aclock); out = fopen(o_file, "a"); if (n_c > 0) { printf("距離 %d\n", r); fprintf(out, " 距離 %d 時間 %s\n", r, now); } else fprintf(out, "問題 %s 乱数 %ld 分割 %d %d 時間 %s", i_file, seed, n_p_x, n_p_y, now); } if (n_c > 0 && (out_m == 0 || out_m == 1)) { for (i1 = 0; i1 < n_c; i1++) { n = seq_w1[i1]; if (seisu > 0) fprintf(out, " %d %d %d\n", n, (int)city[n][0], (int)city[n][1]); else fprintf(out, " %d %f %f\n", n, city[n][0], city[n][1]); if (out_m == 0) { k++; if (k == 10) { getchar(); k = 0; } } } } if (out_m > 0) fclose(out); } /************************/ /* 分割された領域の接続 */ /************************/ int Partition::Connect() { double wd, wd1, wa1, wa2, min = 0; int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r, r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1; /* 領域が1つの場合 */ if (n_p_x == 1 && n_p_y == 1) { for (i1 = 0; i1 < n_seq[0][0]; i1++) seq_w1[i1] = seq[0][0][i1]; } /* 初期設定 */ else { for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) state[i1][i2] = (n_seq[i1][i2] > 0) ? 0 : 1; } /* 実行 */ while (sw > 0) { // 最小節点領域 min_c = n_city; sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) { sw = 1; r1 = i1; r2 = i2; min_c = n_seq[i1][i2]; } } } // 結合する対象領域の決定 if (sw > 0) { sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) { // 節点の数>2 if (n_seq[r1][r2] > 1) { for (i3 = 0; i3 < n_seq[r1][r2]; i3++) { k1 = seq[r1][r2][i3]; k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] : seq[r1][r2][i3+1]; wd1 = rg[k1][k2]; for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = wd1 + rg[k3][k4]; wa1 = rg[k1][k3] + rg[k2][k4]; wa2 = rg[k1][k4] + rg[k2][k3]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = -1; } if (sw == 0 || wa2-wd < min) { min = wa2 - wd; r3 = i1; r4 = i2; s1 = i3; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } } // 節点の数=1 else { k1 = seq[r1][r2][0]; if (n_seq[i1][i2] > 1) { for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = rg[k3][k4]; wa1 = rg[k1][k3] + rg[k1][k4]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = 0; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } else { k3 = seq[i1][i2][0]; wa1 = rg[k1][k3]; if (sw == 0 || wa1 < min) { min = wa1; r3 = i1; r4 = i2; s1 = 0; s2 = 0; sw = 1; } } } } } } // 領域の結合 seq_w1[0] = seq[r1][r2][s1]; k = 1; n = s2; for (i1 = 0; i1 < n_seq[r3][r4]; i1++) { seq_w1[k] = seq[r3][r4][n]; k++; n++; if (n > n_seq[r3][r4]-1) n = 0; } if (sw > 0) { n = s1 + 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n > n_seq[r1][r2]-1) n = 0; seq_w1[k] = seq[r1][r2][n]; k++; n++; } } else { n = s1 - 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n < 0) n = n_seq[r1][r2] - 1; seq_w1[k] = seq[r1][r2][n]; k++; n--; } } // 状態の変更 n_seq[r1][r2] += n_seq[r3][r4]; state[r3][r4] = 1; for (i1 = 0; i1 < n_seq[r1][r2]; i1++) seq[r1][r2][i1] = seq_w1[i1]; sw = 1; } } } r = (seisu > -2) ? (int)kyori(n_city, seq_w1, rg) : (int)(kyori(n_city, seq_w1, rg) + 0.5); Max = r; return r; } /**********************************/ /* コンストラクタ */ /* n_city_i : 都市の数 */ /* max_try_i : 最大試行回数 */ /* sei_i : 整数 or 実数 */ /* sel_i : エッジの選択方法 */ /* neib_i : 近傍 */ /* fix_i : 近傍の扱い方 */ /* out_lvl_i : 出力レベル */ /* out_m_i : 出力方法 */ /* out_d_i : 表示間隔 */ /* o_file_i : 出力ファイル名 */ /* city_i : 都市の位置データ */ /**********************************/ Iteration::Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i, int fix_i, int out_lvl_i, int out_m_i, int out_d_i, char *o_file_i, float **city_i) { double x, y; int ct, i1, i2, sw; // 値の設定 n_city = n_city_i; max_try = max_tri_i; seisu = sei_i; sel = sel_i; neib = neib_i; fix = fix_i; out_lvl = out_lvl_i; out_m = out_m_i; out_d = out_d_i; strcpy(o_file, o_file_i); // 都市の位置データ city = new float * [n_city]; for (i1 = 0; i1 < n_city; i1++) { city[i1] = new float [2]; city[i1][0] = city_i[i1][0]; city[i1][1] = city_i[i1][1]; } // 距離テーブルの作成 rg = new float * [n_city]; for (i1 = 0; i1 < n_city; i1++) { rg[i1] = new float [n_city]; for (i2 = i1+1; i2 < n_city; i2++) { x = city[i2][0] - city[i1][0]; y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (i1 = 1; i1 < n_city; i1++) { for (i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 都市を訪れる順序(初期設定) seq = new int [n_city]; seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; seq_w3 = new int [n_city]; seq_w4 = new int [n_city]; seq_w5 = new int [n_city]; for (i1 = 0; i1 < n_city; i1++) { sw = 0; while (sw == 0) { ct = (int)(genrand_real3() * n_city); if (ct >= n_city) ct = n_city - 1; seq[i1] = ct; sw = 1; for (i2 = 0; i2 < i1 && sw > 0; i2++) { if (ct == seq[i2]) sw = 0; } } } } /****************/ /* デストラクタ */ /****************/ Iteration::~Iteration () { int i1; if (n_city > 0) { for (i1 = 0; i1 < n_city; i1++) { delete [] city[i1]; delete [] rg[i1]; } delete [] city; delete [] rg; delete[] seq; delete [] seq_w1; delete [] seq_w2; delete [] seq_w3; delete [] seq_w4; delete [] seq_w5; } } /****************/ /* 最適化の実行 */ /****************/ int Iteration::Optimize () { double max; int n_tri, sw; // 初期設定 n_tri = 0; max = kyori(n_city, seq, rg); if (out_m >= 0 && abs(out_lvl) > 0) { if (seisu > -2) printf("***試行回数 %d 距離 %d\n", n_tri, (int)max); else printf("***試行回数 %d 距離 %f\n", n_tri, max); Output(out_lvl, n_tri, max); } // 実行 sw = 1; for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) { // 改善 sw = Change(&max); // 出力 if (out_d > 0 && n_tri%out_d == 0) { if (seisu > -2) printf("***試行回数 %d 距離 %d\n", n_tri, (int)max); else printf("***試行回数 %d 距離 %f\n", n_tri, max); } if (out_m >= 0 && abs(out_lvl) > 0) { if (n_tri%abs(out_lvl) == 0) Output(out_lvl, n_tri, max); } } // 最終出力 if (out_m >= 0) { n_tri--; if (seisu > -2) printf("***試行回数 %d 距離 %d\n", n_tri, (int)max); else printf("***試行回数 %d 距離 %f\n", n_tri, max); Output(out_lvl, n_tri, max); } return n_tri; } /*******************************/ /* 出力 */ /* sw : >=0 : 出力先未定 */ /* < 0 : ファイル */ /* n_tri : 現在の試行回数 */ /* r : 距離 */ /*******************************/ void Iteration::Output(int sw, int n_tri, double r) { int i1, k = 0, n, pr; char *now; time_t aclock; FILE *out; if (sw >= 0) { printf(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? "); scanf("%d", &pr); } else pr = -1; if (pr != 0) { if (pr > 0) { out = stdout; getchar(); } else { time(&aclock); now = ctime(&aclock); out = fopen(o_file, "a"); if (seisu > -2) fprintf(out, "***試行回数 %d 距離 %d 時間 %s\n", n_tri, (int)r, now); else fprintf(out, "***試行回数 %d 距離 %d 時間 %s\n", n_tri, (int)(r+0.5), now); } if (out_m == 0) { for (i1 = 0; i1 < n_city; i1++) { n = seq[i1]; if (seisu > 0) fprintf(out, " %d %d %d\n", n, (int)city[n][0], (int)city[n][1]); else fprintf(out, " %d %f %f\n", n, city[n][0], city[n][1]); if (pr > 0) { k++; if (k == pr) { getchar(); k = 0; } } } } if (pr <= 0) fclose(out); } } /**************************************/ /* エッジの入れ替え */ /* r_m : 距離 */ /* return : =0 : 改善がなかった */ /* =1 : 改善があった */ /**************************************/ int Iteration::Change(double *r_m) { double max, max1 = 0.0, r; int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4, n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2; max = *r_m; /* 近傍を可変 */ if (fix == 0) { // 初期設定(k=2) k = 2; for (i1 = 0; i1 < n_city; i1++) { seq_w4[i1] = seq[i1]; seq_w3[i1] = 0; } // 評価 sw2 = 0; for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) { n = (i0 == 0) ? n_city-1 : n_city; for (i1 = i0+2; i1 < n && sw2 < 2; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0+1]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[i0+1]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[i0]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; k1 = i0; k2 = i0 + 1; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; if (sel > 0 && max1 < max) sw2 = 2; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[k1] = 1; seq_w3[k2] = 1; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; // 実行(k>2) while (sw1 == 0) { // 評価 sw2 = 0; for (i1 = 0; i1 < n_city; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; if (seq_w3[k3] == 0 && seq_w3[k4] == 0) { // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k2]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[k2]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[k1]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k1]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; } } /* 近傍を固定 */ else { n3 = (int)(genrand_real3() * (n_city - 2)); if (n3 > n_city-3) n3 = n_city - 3; // 2近傍 for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { if (n3 == 0) n1 = n_city - 2; else n1 = n_city - 1; for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) { // 枝の場所((n3,n3+1), (k1,k2)) k1 = i2; if (i2 == n_city-1) k2 = 0; else k2 = i2 + 1; // 枝の入れ替え seq_w1[0] = seq[n3]; k = 1; for (i3 = k1; i3 >= n3+1; i3--) { seq_w1[k] = seq[i3]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価 r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } } n3++; if (n3 > n_city-3) n3 = 0; } // 3近傍 if (neib == 3 && ch == 0) { for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { n1 = n_city - 2; n2 = n_city - 1; for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) { for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) { // 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3; if (i3 == n_city-1) k2 = 0; else k2 = i3 + 1; // 枝の入れ替えと評価 // 入れ替え(その1) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その1) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その2) seq_w1[0] = seq[n3]; k = 1; for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その2) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その3) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その3) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その4) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その4) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } } } n3++; if (n3 > n_city-3) n3 = 0; } } } // 設定 if (sw > 0) { *r_m = max; for (i1 = 0; i1 < n_city; i1++) seq[i1] = seq_w2[i1]; } return sw; } /*********************************/ /* 距離の計算 */ /* n_c : 都市の数 */ /* p : 都市番号 */ /* rg : 都市間の距離 */ /* return : 距離 */ /*********************************/ float kyori(int n_c, int *p, float **rg) { float range = 0; int i1, n1, n2; n1 = p[0]; for (i1 = 1; i1 < n_c; i1++) { n2 = p[i1]; range += rg[n1][n2]; n1 = n2; } n2 = p[0]; range += rg[n1][n2]; return range; } /****************/ /* main program */ /****************/ int main(int argc, char *argv[]) { double mean; int i0, i1, n, nm, max; char i_file[100]; FILE *in, *out; Partition *pt; // 入力ミス if (argc <= 1) { printf("***error ファイル名を入力して下さい\n"); exit(1); } // 入力OK else { // ファイルのオープン in = fopen(argv[1], "r"); if (in == NULL) { printf("***error ファイル名が不適当です\n"); exit(1); } // 入力データファイル名と問題数 fscanf(in, "%*s %d", &nm); for (i0 = 0; i0 < nm; i0++) { // 各問題の実行 fscanf(in, "%*s %s %*s %d", i_file, &n); pt = new Partition(i_file); mean = 0.0; max = -1; // 乱数の初期値を変える for (i1 = 0; i1 < n; i1++) { // 問題 printf("\n+++++問題 %s +++++\n", i_file); // 最適化 pt->Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値 // 最適値とその平均の計算 mean += pt->Max; if (max < 0 || pt->Max < max) max = pt->Max; } // 結果 if (pt->out_m <= 0) printf(" -----最小 %d 平均 %f-----\n", max, mean/n); else { out = fopen(pt->o_file, "a"); fprintf(out, " -----最小 %d 平均 %f-----\n", max, mean/n); fclose(out); } } fclose(in); } return 0; } //------------------------ケーススタディデータ(data.txt)------ /* 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 */ //---------------------データファイル(data1.txt)------------ /* 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 */ //---------------------データファイル(data2.txt)------------ /* 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 */ //---------------------MT.h--------------------------- // A C-program for MT19937, with initialization improved 2002/1/26. // Coded by Takuji Nishimura and Makoto Matsumoto. // // Before using, initialize the state by using init_genrand(seed) // or init_by_array(init_key, key_length). // // Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. The names of its contributors may not be used to endorse or promote // products derived from this software without specific prior written // permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // // Any feedback is very welcome. // http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html // email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) // The original version of http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c was modified by Takahiro Omi as // - delete line 47 "#include<stdio.h>" // - delete line 174 int main(void){...} // - change N -> MT_N // - change N -> MT_N // - change the file name "mt19937ar.c" -> "MT.h" /* // Period parameters #define MT_N 624 #define MT_M 397 #define MATRIX_A 0x9908b0dfUL // constant vector a #define UPPER_MASK 0x80000000UL // most significant w-r bits #define LOWER_MASK 0x7fffffffUL // least significant r bits static unsigned long mt[MT_N]; // the array for the state vector static int mti=MT_N+1; // mti==MT_N+1 means mt[MT_N] is not initialized // initializes mt[MT_N] with a seed void init_genrand(unsigned long s) { mt[0]= s & 0xffffffffUL; for (mti=1; mti<MT_N; mti++) { mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); // See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. // In the previous versions, MSBs of the seed affect // only MSBs of the array mt[]. // 2002/01/09 modified by Makoto Matsumoto mt[mti] &= 0xffffffffUL; // for >32 bit machines } } // initialize by an array with array-length // init_key is the array for initializing keys // key_length is its length // slight change for C++, 2004/2/26 void init_by_array(unsigned long init_key[], int key_length) { int i, j, k; init_genrand(19650218UL); i=1; j=0; k = (MT_N>key_length ? MT_N : key_length); for (; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + init_key[j] + j; // non linear mt[i] &= 0xffffffffUL; // for WORDSIZE > 32 machines i++; j++; if (i>=MT_N) { mt[0] = mt[MT_N-1]; i=1; } if (j>=key_length) j=0; } for (k=MT_N-1; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i; // non linear mt[i] &= 0xffffffffUL; // for WORDSIZE > 32 machines i++; if (i>=MT_N) { mt[0] = mt[MT_N-1]; i=1; } } mt[0] = 0x80000000UL; // MSB is 1; assuring non-zero initial array } // generates a random number on [0,0xffffffff]-interval unsigned long genrand_int32(void) { unsigned long y; static unsigned long mag01[2]={0x0UL, MATRIX_A}; // mag01[x] = x * MATRIX_A for x=0,1 if (mti >= MT_N) { // generate N words at one time int kk; if (mti == MT_N+1) // if init_genrand() has not been called, init_genrand(5489UL); // a default initial seed is used for (kk=0;kk<MT_N-MT_M;kk++) { y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y & 0x1UL]; } for (;kk<MT_N-1;kk++) { y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK); mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y & 0x1UL]; } y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK); mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; mti = 0; } y = mt[mti++]; // Tempering y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } // generates a random number on [0,0x7fffffff]-interval long genrand_int31(void) { return (long)(genrand_int32()>>1); } // generates a random number on [0,1]-real-interval double genrand_real1(void) { return genrand_int32()*(1.0/4294967295.0); // divided by 2^32-1 } // generates a random number on [0,1)-real-interval double genrand_real2(void) { return genrand_int32()*(1.0/4294967296.0); // divided by 2^32 } // generates a random number on (0,1)-real-interval double genrand_real3(void) { return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); // divided by 2^32 } // generates a random number on [0,1) with 53-bit resolution double genrand_res53(void) { unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); } // These real versions are due to Isaku Wada, 2002/01/09 added */
/****************************/ /* 巡回セールスマン問題 */ /* (分割法) */ /* coded by Y.Suganuma */ /****************************/ import java.io.*; import java.util.Random; import java.util.Date; import java.util.StringTokenizer; import java.awt.*; import java.awt.event.*; /*************************/ /* クラスPartitionの定義 */ /*************************/ class Partition { private float [][] rg; // 都市間の距離 private float [] p_x; // x軸の分割点 private float [] p_y; // y軸の分割点 private int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 private int max_try; // 最大試行回数 private int [] seq_w1; // 作業領域 private int [] seq_w2; // 作業領域 private int neib; // 近傍(2 or 3) int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) private int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 private String i_file; // 入力ファイル名 private Win_pt wn; // Win_itオブジェクト private Random rn; // 乱数 float [][] city; //都市の位置データ float [][] city_i; //都市の位置データ(作業領域) int Max; // 最適経路の長さ int n_city; // 都市の数 int [][] n_seq; // 各領域の都市数 int [][] n_seq1; // 各領域の都市数(ワーク) int n_p_x; // x軸方向の分割数 int n_p_y; // y軸方向の分割数 int out_m; // 出力方法 // =-1 : ディスプレイ(経路長だけ) // =0 : ディスプレイ // =1 : ファイル // =2 : ファイル(経路長だけ) int range; // 現在の評価値 int seed; // 乱数の初期値 int [][][] seq; // 経路 int [][][] seq1; // 経路(ワーク) int [][] state; // 領域結合用ワーク int display; // 画面表示 // =0 : 画面表示を行わない // =1 : 結果だけを表示 // =2 : 初期状態と結果を表示 // =3 : 1領域の最適化終了毎に表示 String o_file; // 出力ファイル名 /**************************/ /* コンストラクタ */ /* name : ファイル名 */ /**************************/ Partition(String name) throws IOException, FileNotFoundException { double x, y; float max_x, max_y, min_x, min_y, s_x, s_y; int i1, i2, i3, max = 0, n; String line; StringTokenizer dt; BufferedReader in = new BufferedReader(new FileReader(name)); // 基本データ i_file = name; line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); n_city = Integer.parseInt(dt.nextToken()); dt.nextToken(); sel = Integer.parseInt(dt.nextToken()); dt.nextToken(); neib = Integer.parseInt(dt.nextToken()); dt.nextToken(); seisu = Integer.parseInt(dt.nextToken()); if (neib < 0) { neib = -neib; fix = 0; } else fix = 1; line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); out_m = Integer.parseInt(dt.nextToken()); dt.nextToken(); o_file = dt.nextToken(); line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); dt.nextToken(); n_p_x = Integer.parseInt(dt.nextToken()); dt.nextToken(); n_p_y = Integer.parseInt(dt.nextToken()); dt.nextToken(); max_try = Integer.parseInt(dt.nextToken()); line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); display = Integer.parseInt(dt.nextToken()); line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); int font = Integer.parseInt(dt.nextToken()); dt.nextToken(); int width = Integer.parseInt(dt.nextToken()); int height = Integer.parseInt(dt.nextToken()); // 都市の位置データ city = new float [n_city][2]; for (i1 = 0; i1 < n_city; i1++) { line = in.readLine(); dt = new StringTokenizer(line, " "); city[i1][0] = Float.parseFloat(dt.nextToken()); city[i1][1] = Float.parseFloat(dt.nextToken()); } // ファイルのクローズ in.close(); // 距離テーブルの作成 rg = new float [n_city][n_city]; for (i1 = 0; i1 < n_city; i1++) { for (i2 = i1+1; i2 < n_city; i2++) { x = city[i2][0] - city[i1][0]; y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)Math.sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (i1 = 1; i1 < n_city; i1++) { for (i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 作業領域 state = new int [n_p_y][n_p_x]; n_seq = new int [n_p_y][n_p_x]; n_seq1 = new int [n_p_y][n_p_x]; seq = new int [n_p_y][n_p_x][n_city]; seq1 = new int [n_p_y][n_p_x][n_city]; seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; p_x = new float [n_p_x]; p_y = new float [n_p_y]; // 都市の分割 for (i1 = 0; i1 < n_city; i1++) seq_w1[i1] = 0; min_x = city[0][0]; max_x = city[0][0]; min_y = city[0][1]; max_y = city[0][1]; for (i1 = 1; i1 < n_city; i1++) { if (city[i1][0] < min_x) min_x = city[i1][0]; else { if (city[i1][0] > max_x) max_x = city[i1][0]; } if (city[i1][1] < min_y) min_y = city[i1][1]; else { if (city[i1][1] > max_y) max_y = city[i1][1]; } } s_x = (max_x - min_x) / n_p_x; p_x[0] = min_x + s_x; p_x[n_p_x-1] = max_x; for (i1 = 1; i1 < n_p_x-1; i1++) p_x[i1] = p_x[0] + i1 * s_x; s_y = (max_y - min_y) / n_p_y; p_y[0] = min_y + s_y; p_y[n_p_y-1] = max_y; for (i1 = 1; i1 < n_p_y-1; i1++) p_y[i1] = p_y[0] + i1 * s_y; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { n = 0; for (i3 = 0; i3 < n_city; i3++) { if (seq_w1[i3] == 0) { if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) { seq_w1[i3] = 1; seq_w2[n] = i3; n++; } } } n_seq1[i1][i2] = n; if (n > 0) { for (i3 = 0; i3 < n; i3++) seq1[i1][i2][i3] = seq_w2[i3]; if (n > max) max = n; } } } for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1; } // 作業領域 System.out.println("最大都市数 " + max); city_i = new float [max][2]; // Windowの生成 if (display > 0) wn = new Win_pt (this, font, width, height); } /******************************/ /* 最適化の実行 */ /* seed_i : 乱数の初期値 */ /******************************/ void Optimize(int seed_i) throws IOException, FileNotFoundException { int i1, i2, i3, k, max, nb, r; Iteration it; BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // 乱数の初期設定 seed = seed_i; rn = new Random (seed); for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { n_seq[i1][i2] = n_seq1[i1][i2]; state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1; for (i3 = 0; i3 < n_seq1[i1][i2]; i3++) seq[i1][i2][i3] = seq1[i1][i2][i3]; } } // 初期状態の出力(図) if (display >= 2) { wn.Draw(0, -1, -1); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } // 分割数と開始時間の出力(ファイルへ出力する場合) if (out_m > 0) Output(0); // 分割毎の最適化 for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (n_seq[i1][i2] > 3) { // 近傍の大きさ nb = (n_seq[i1][i2] > 3) ? neib : 2; // 都市位置データの設定 for (i3 = 0; i3 < n_seq[i1][i2]; i3++) { k = seq[i1][i2][i3]; city_i[i3][0] = city[k][0]; city_i[i3][1] = city[k][1]; } // 最適化 it = new Iteration (n_seq[i1][i2], max_try, seisu, sel, nb, fix, 0, -1, 0, o_file, city_i, 0, rn); max = it.Optimize(); // 結果の保存 for (i3 = 0; i3 < n_seq[i1][i2]; i3++) { k = it.seq[i3]; seq_w1[i3] = seq[i1][i2][k]; } for (i3 = 0; i3 < n_seq[i1][i2]; i3++) seq[i1][i2][i3] = seq_w1[i3]; // 出力(文字) r = (seisu > -2) ? (int)Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) : (int)(Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5); System.out.print(" y " + (i1+1) + " x " + (i2+1) + " n_city " + n_seq[i1][i2] + " range " + r + " (trial " + max + ")\n"); // 区分毎最適化結果の出力(図) if (display == 3) { wn.Draw(0, i1, i2); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } } } } // 経路の接続 range = Connect(); Max = range; // 出力(図) if (display > 0) { wn.Draw(1, -1, -1); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } // 出力(文字) Output(n_city); } /***********************/ /* 出力 */ /* n_c : 都市の数 */ /***********************/ void Output(int n_c) throws IOException, FileNotFoundException { int i1, k = 0, n; String now; PrintStream out = null; BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); if (out_m <= 0) { out = System.out; out.println("距離 " + range); in.readLine(); } else { Date newtime = new Date(); // 現在時刻の獲得 now = newtime.toString(); // 文字列への変換 out = new PrintStream(new FileOutputStream(o_file, true)); if (n_c > 0) { System.out.println("距離 " + range); out.println(" 距離 " + range + " 時間 " + now); } else out.println("問題 " + i_file + " 乱数 " + seed + " 分割 " + n_p_x + " " + n_p_y + " 時間 " + now); } if (n_c > 0 && (out_m == 0 || out_m == 1)) { for (i1 = 0; i1 < n_c; i1++) { n = seq_w1[i1]; if (seisu > 0) out.println(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else out.println(" " + n + " " + city[n][0] + " " + city[n][1]); if (out_m == 0) { k++; if (k == 10) { in.readLine(); k = 0; } } } } if (out_m > 0) out.close(); } /************************/ /* 分割された領域の接続 */ /************************/ int Connect() throws IOException { double wd, wd1, wa1, wa2, min = 0; int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r, r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1; BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); /* 領域が1つの場合 */ if (n_p_x == 1 && n_p_y == 1) { for (i1 = 0; i1 < n_seq[0][0]; i1++) seq_w1[i1] = seq[0][0][i1]; } /* 領域が複数の場合 */ else { while (sw > 0) { // 最小節点領域 min_c = n_city; sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) { sw = 1; r1 = i1; r2 = i2; min_c = n_seq[i1][i2]; } } } // 結合する対象領域の決定 if (sw > 0) { sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) { // 節点の数>2 if (n_seq[r1][r2] > 1) { for (i3 = 0; i3 < n_seq[r1][r2]; i3++) { k1 = seq[r1][r2][i3]; k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] : seq[r1][r2][i3+1]; wd1 = rg[k1][k2]; for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = wd1 + rg[k3][k4]; wa1 = rg[k1][k3] + rg[k2][k4]; wa2 = rg[k1][k4] + rg[k2][k3]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = -1; } if (sw == 0 || wa2-wd < min) { min = wa2 - wd; r3 = i1; r4 = i2; s1 = i3; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } } // 節点の数=1 else { k1 = seq[r1][r2][0]; if (n_seq[i1][i2] > 1) { for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = rg[k3][k4]; wa1 = rg[k1][k3] + rg[k1][k4]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = 0; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } else { k3 = seq[i1][i2][0]; wa1 = rg[k1][k3]; if (sw == 0 || wa1 < min) { min = wa1; r3 = i1; r4 = i2; s1 = 0; s2 = 0; sw = 1; } } } } } } // 領域の結合 seq_w1[0] = seq[r1][r2][s1]; k = 1; n = s2; for (i1 = 0; i1 < n_seq[r3][r4]; i1++) { seq_w1[k] = seq[r3][r4][n]; k++; n++; if (n > n_seq[r3][r4]-1) n = 0; } if (sw > 0) { n = s1 + 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n > n_seq[r1][r2]-1) n = 0; seq_w1[k] = seq[r1][r2][n]; k++; n++; } } else { n = s1 - 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n < 0) n = n_seq[r1][r2] - 1; seq_w1[k] = seq[r1][r2][n]; k++; n--; } } // 状態の変更 n_seq[r1][r2] += n_seq[r3][r4]; state[r3][r4] = 1; for (i1 = 0; i1 < n_seq[r1][r2]; i1++) seq[r1][r2][i1] = seq_w1[i1]; sw = 1; // 結果の図示 if (display == 3) { wn.Draw(0, r1, r2); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } } } } r = (seisu > -2) ? (int)Iteration.kyori(n_city, seq_w1, rg) : (int)(Iteration.kyori(n_city, seq_w1, rg) + 0.5); return r; } } /*************************/ /* クラスIterationの定義 */ /*************************/ class Iteration { private float [][] rg; // 都市間の距離 private int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 private int max_try; // 最大試行回数 private int neib; // 近傍(2 or 3) private int out_d; // 表示間隔 private int [] seq_w1; // 都市を訪れる順序(ワーク) private int [] seq_w2; // 都市を訪れる順序(ワーク) private int [] seq_w3; // 都市を訪れる順序(ワーク) private int [] seq_w4; // 都市を訪れる順序(ワーク) private int [] seq_w5; // 都市を訪れる順序(ワーク) private int out_lvl; // 出力レベル // =0 : 最終出力だけ // n>0 : n世代毎に出力(負の時はファイル) private int out_m; // 出力方法 // =-1 : 出力しない // =0 : すべてを出力 // =1 : 評価値だけを出力(最終結果だけはすべてを出力) int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) private int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 private String o_file; // 出力ファイル名 private Win_it wn; // Win_itオブジェクト private Random rn; // 乱数 double range; // 現在の評価値 float [][] city; //都市の位置データ int n_city; // 都市の数 int n_tri; // 試行回数 int [] seq; // 都市を訪れる順序 int n_eg; // 交換した枝の数 int [] eg; // 交換した枝 int display; // 画面表示 // =0 : 画面表示を行わない // =1 : 結果だけを表示 // =2 : 初期状態と結果を表示 // =3 : ワンステップ毎表示 /**********************************/ /* コンストラクタ */ /* n_city_i : 都市の数 */ /* max_try_i : 最大試行回数 */ /* sei_i : 整数 or 実数 */ /* sel_i : エッジの選択方法 */ /* neib_i : 近傍(2 or 3) */ /* fix_i : 近傍の扱い方 */ /* out_lvl_i : 出力レベル */ /* out_m_i : 出力方法 */ /* out_d_i : 表示間隔 */ /* o_file_i : 出力ファイル名 */ /* city_i : 都市の位置データ */ /* display_i : 画面表示 */ /* rn_i : 乱数 */ /**********************************/ Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i, int fix_i, int out_lvl_i, int out_m_i, int out_d_i, String o_file_i, float [][] city_i, int display_i, Random rn_i) { double x, y; int ct, i1, i2, sw; // 値の設定 n_city = n_city_i; max_try = max_tri_i; seisu = sei_i; sel = sel_i; neib = neib_i; fix = fix_i; out_lvl = out_lvl_i; out_m = out_m_i; out_d = out_d_i; o_file = o_file_i; display = display_i; rn = rn_i; n_tri = 0; n_eg = 0; eg = new int [6]; // 都市の位置データ city = new float [n_city][2]; for (i1 = 0; i1 < n_city; i1++) { city[i1][0] = city_i[i1][0]; city[i1][1] = city_i[i1][1]; } // 距離テーブルの作成 rg = new float [n_city][n_city]; for (i1 = 0; i1 < n_city; i1++) { for (i2 = i1+1; i2 < n_city; i2++) { x = city[i2][0] - city[i1][0]; y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)Math.sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (i1 = 1; i1 < n_city; i1++) { for (i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 都市を訪れる順序(初期設定) seq = new int [n_city]; seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; seq_w3 = new int [n_city]; seq_w4 = new int [n_city]; seq_w5 = new int [n_city]; for (i1 = 0; i1 < n_city; i1++) { sw = 0; while (sw == 0) { ct = (int)(rn.nextDouble() * n_city); if (ct >= n_city) ct = n_city - 1; seq[i1] = ct; sw = 1; for (i2 = 0; i2 < i1 && sw > 0; i2++) { if (ct == seq[i2]) sw = 0; } } } } /****************/ /* 最適化の実行 */ /****************/ int Optimize () throws IOException, FileNotFoundException { int sw; BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); // ワンステップづつ実行しない場合 if (display < 3) { // 初期設定 range = kyori(n_city, seq, rg); // 初期状態の出力(図) if (display == 2) { wn.Draw(); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } // 初期状態の出力(文字) if (out_m >= 0 && Math.abs(out_lvl) > 0) { if (seisu > -2) System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range); else System.out.println("***試行回数 " + n_tri + " 距離 " + range); Output(out_lvl); } // 実行 sw = 1; for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) { // 改善 sw = Change(); // 出力(文字) if (out_d > 0 && n_tri%out_d == 0) { if (seisu > -2) System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range); else System.out.println("***試行回数 " + n_tri + " 距離 " + range); } if (out_m >= 0 && Math.abs(out_lvl) > 0) { if (n_tri%Math.abs(out_lvl) == 0) Output(out_lvl); } } // 最終出力(図) if (display == 1 || display == 2) { wn.Draw(); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); } // 最終出力(文字) if (out_m >= 0) { n_tri--; if (seisu > -2) System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range); else System.out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5)); Output(out_lvl); } } // ワンステップづつ実行する場合 else { // 初期設定 range = kyori(n_city, seq, rg); // 初期状態の出力(図) wn.Draw(); System.out.println(" 図を確認したらreturnキーを押してください"); in.readLine(); // 初期状態の出力(文字) if (out_m >= 0 && Math.abs(out_lvl) > 0) { if (seisu > -2) System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range); else System.out.println("***試行回数 " + n_tri + " 距離 " + range); Output(out_lvl); } // マウスによる実行 System.out.print("\n終了したらreturnキーを押してください\n"); in.readLine(); // 最終出力(文字) if (out_m >= 0) { if (seisu > -2) System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range); else System.out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5)); Output(out_lvl); } } return n_tri; } /*******************************/ /* 出力 */ /* sw : >= 0 : 出力先未定 */ /* < 0 : ファイル */ /*******************************/ void Output(int sw) throws IOException, FileNotFoundException { int i1, k = 0, n, pr; String now; PrintStream out = null; BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); if (sw >= 0) { System.out.print(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? "); pr = Integer.parseInt(in.readLine()); } else pr = -1; if (pr != 0) { if (pr > 0) out = System.out; else { Date newtime = new Date(); // 現在時刻の獲得 now = newtime.toString(); // 文字列への変換 out = new PrintStream(new FileOutputStream(o_file, true)); if (seisu > -2) out.println("***試行回数 " + n_tri + " 距離 " + (int)range + " 時間 " + now); else out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5) + " 時間 " + now); } if (out_m == 0) { for (i1 = 0; i1 < n_city; i1++) { n = seq[i1]; if (seisu > 0) out.println(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else out.println(" " + n + " " + city[n][0] + " " + city[n][1]); if (pr > 0) { k++; if (k == pr) { in.readLine(); k = 0; } } } } if (pr <= 0) out.close(); } } /**************************************/ /* エッジの入れ替え */ /* return : =0 : 改善がなかった */ /* =1 : 改善があった */ /**************************************/ int Change() { double max, max1 = 0.0, r; int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4, n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2; max = range; /* 近傍を可変 */ if (fix == 0) { // 初期設定(k=2) k = 2; for (i1 = 0; i1 < n_city; i1++) { seq_w4[i1] = seq[i1]; seq_w3[i1] = 0; } // 評価 sw2 = 0; for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) { n = (i0 == 0) ? n_city-1 : n_city; for (i1 = i0+2; i1 < n && sw2 < 2; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0+1]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[i0+1]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[i0]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; k1 = i0; k2 = i0 + 1; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; if (sel > 0 && max1 < max) sw2 = 2; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[k1] = 1; seq_w3[k2] = 1; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; // 実行(k>2) while (sw1 == 0) { // 評価 sw2 = 0; for (i1 = 0; i1 < n_city; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; if (seq_w3[k3] == 0 && seq_w3[k4] == 0) { // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k2]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[k2]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[k1]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k1]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; } } /* 近傍を固定 */ else { n3 = (int)(rn.nextDouble() * (n_city - 2)); if (n3 > n_city-3) n3 = n_city - 3; // 2近傍 for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { if (n3 == 0) n1 = n_city - 2; else n1 = n_city - 1; for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) { // 枝の場所((n3,n3+1), (k1,k2)) k1 = i2; if (i2 == n_city-1) k2 = 0; else k2 = i2 + 1; // 枝の入れ替え seq_w1[0] = seq[n3]; k = 1; for (i3 = k1; i3 >= n3+1; i3--) { seq_w1[k] = seq[i3]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価 r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; n_eg = 2; eg[0] = seq[n3]; eg[1] = seq[n3+1]; eg[2] = seq[k1]; eg[3] = seq[k2]; } } n3++; if (n3 > n_city-3) n3 = 0; } // 3近傍 if (neib == 3 && ch == 0) { for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { n1 = n_city - 2; n2 = n_city - 1; for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) { for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) { // 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3; if (i3 == n_city-1) k2 = 0; else k2 = i3 + 1; // 枝の入れ替えと評価 // 入れ替え(その1) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その1) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; n_eg = 3; eg[0] = seq[n3]; eg[1] = seq[n3+1]; eg[2] = seq[i2]; eg[3] = seq[i2+1]; eg[4] = seq[k1]; eg[5] = seq[k2]; } // 入れ替え(その2) seq_w1[0] = seq[n3]; k = 1; for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その2) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; n_eg = 3; eg[0] = seq[n3]; eg[1] = seq[n3+1]; eg[2] = seq[i2]; eg[3] = seq[i2+1]; eg[4] = seq[k1]; eg[5] = seq[k2]; } // 入れ替え(その3) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その3) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; n_eg = 3; eg[0] = seq[n3]; eg[1] = seq[n3+1]; eg[2] = seq[i2]; eg[3] = seq[i2+1]; eg[4] = seq[k1]; eg[5] = seq[k2]; } // 入れ替え(その4) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その4) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; n_eg = 3; eg[0] = seq[n3]; eg[1] = seq[n3+1]; eg[2] = seq[i2]; eg[3] = seq[i2+1]; eg[4] = seq[k1]; eg[5] = seq[k2]; } } } n3++; if (n3 > n_city-3) n3 = 0; } } } // 設定 if (sw > 0) { range = max; for (i1 = 0; i1 < n_city; i1++) seq[i1] = seq_w2[i1]; } return sw; } /*********************************/ /* 距離の計算 */ /* n_c : 都市の数 */ /* p : 都市番号 */ /* rg : 都市間の距離 */ /* return : 距離 */ /*********************************/ static float kyori(int n_c, int [] p, float [][] rg) { float range = 0; int i1, n1, n2; n1 = p[0]; for (i1 = 1; i1 < n_c; i1++) { n2 = p[i1]; range += rg[n1][n2]; n1 = n2; } n2 = p[0]; range += rg[n1][n2]; return range; } } /**********************/ /* クラスWin_ptの定義 */ /**********************/ class Win_pt extends Frame { double ritu; // 表示倍率 private float min_x, max_x, min_y, max_y; // 都市の存在範囲 private int font; // フォントサイズ private int next, yoyu_x, yoyu_y; // 表示位置 private int r_sw; // 距離表示の有無 private int c_x, c_y; // 現在の対象領域 private Partition pt; /*************************************/ /* コンストラクタ */ /* pt : Partitionのオブジェクト */ /* city_i : 都市の位置データ */ /* font_i : フォントサイズ */ /* width,height : 表示範囲 */ /*************************************/ Win_pt (Partition pt_i, int font_i, int width, int height) { // Frameクラスのコンストラクタの呼び出し super("巡回セールスマン問題"); // 値の設定と領域の確保 double k1, k2; int i1; pt = pt_i; font = font_i; next = 70; yoyu_x = 30; yoyu_y = 80; // 描画領域の計算 min_x = pt.city[0][0]; max_x = pt.city[0][0]; min_y = pt.city[0][1]; max_y = pt.city[0][1]; for (i1 = 1; i1 < pt.n_city; i1++) { if (pt.city[i1][0] < min_x) min_x = pt.city[i1][0]; else { if (pt.city[i1][0] > max_x) max_x = pt.city[i1][0]; } if (pt.city[i1][1] < min_y) min_y = pt.city[i1][1]; else { if (pt.city[i1][1] > max_y) max_y = pt.city[i1][1]; } } k1 = (double)(width - 2 * yoyu_x) / (max_x - min_x); if (pt.display == 3) k2 = (double)(height - yoyu_y - next) / (max_y - min_y); else k2 = (double)(height - yoyu_y - yoyu_x) / (max_y - min_y); ritu = (k1 < k2) ? k1 : k2; // Windowサイズ width = 2 * yoyu_x + (int)(ritu * (max_x - min_x)); height = yoyu_y + yoyu_x + (int)(ritu * (max_y - min_y)); setSize(width, height); // ウィンドウを表示 setVisible(true); // イベントアダプタ addWindowListener(new WinEnd()); } /********************************/ /* 描画指示 */ /* sw : 距離表示の有無 */ /* c_y_i, c_x_i : 対象領域 */ /********************************/ void Draw(int sw, int c_y_i, int c_x_i) { r_sw = sw; c_y = c_y_i; c_x = c_x_i; repaint(); } /********/ /* 描画 */ /********/ public void paint (Graphics g) { int i1, i2, i3, k, n1, n2, size = 6, x1, x2, y1, y2; Font f; // 距離の表示 if (r_sw > 0) { f = new Font("TimesRoman", Font.BOLD, 25); g.setFont(f); if (pt.seisu > -2) g.drawString("Length : "+Integer.toString((int)pt.range), yoyu_x, yoyu_y-30); else g.drawString("Length : "+Integer.toString((int)(pt.range+0.5)), yoyu_x, yoyu_y-30); } // 都市番号のフォントサイズ if (font > 0) { f = new Font("TimesRoman", Font.PLAIN, font); g.setFont(f); } // 点と直線のプロット k = size / 2; for (i1 = 0; i1 < pt.n_p_y; i1++) { for (i2 = 0; i2 < pt.n_p_x; i2++) { if (pt.state[i1][i2] == 0) { if (i1 == c_y && i2 == c_x) g.setColor(Color.red); else g.setColor(Color.black); for (i3 = 0; i3 < pt.n_seq[i1][i2]; i3++) { n2 = pt.seq[i1][i2][i3]; x2 = yoyu_x + (int)(ritu * (pt.city[n2][0] - min_x)); y2 = yoyu_y + (int)(ritu * (max_y - pt.city[n2][1])); g.fillOval(x2, y2, size, size); if (font > 0) g.drawString(Integer.toString(n2), x2+k, y2-k); if (i3 > 0) { n1 = pt.seq[i1][i2][i3-1]; x1 = yoyu_x + (int)(ritu * (pt.city[n1][0] - min_x)); y1 = yoyu_y + (int)(ritu * (max_y - pt.city[n1][1])); g.drawLine(x1+k, y1+k, x2+k, y2+k); if (i3 == pt.n_seq[i1][i2]-1) { n1 = pt.seq[i1][i2][0]; x1 = yoyu_x + (int)(ritu * (pt.city[n1][0] - min_x)); y1 = yoyu_y + (int)(ritu * (max_y - pt.city[n1][1])); g.drawLine(x1+k, y1+k, x2+k, y2+k); } } } } } } } /************/ /* 終了処理 */ /************/ class WinEnd extends WindowAdapter { public void windowClosing(WindowEvent e) { System.exit(0); } } } /**********************/ /* クラスWin_itの定義 */ /**********************/ class Win_it extends Frame { double ritu; // 表示倍率 private float min_x, max_x, min_y, max_y; // 都市の存在範囲 private int font; // フォントサイズ private int next, yoyu_x, yoyu_y; // 表示位置 private Iteration it; /***************************************/ /* コンストラクタ */ /* it_i : Iterationのオブジェクト */ /* font_i : フォントサイズ */ /* width,height : 表示範囲 */ /***************************************/ Win_it (Iteration it_i, int font_i, int width, int height) { // Frameクラスのコンストラクタの呼び出し super("巡回セールスマン問題"); // 値の設定と領域の確保 double k1, k2; int i1; it = it_i; font = font_i; next = 70; yoyu_x = 30; yoyu_y = 80; // 描画領域の計算 min_x = it.city[0][0]; max_x = it.city[0][0]; min_y = it.city[0][1]; max_y = it.city[0][1]; for (i1 = 1; i1 < it.n_city; i1++) { if (it.city[i1][0] < min_x) min_x = it.city[i1][0]; else { if (it.city[i1][0] > max_x) max_x = it.city[i1][0]; } if (it.city[i1][1] < min_y) min_y = it.city[i1][1]; else { if (it.city[i1][1] > max_y) max_y = it.city[i1][1]; } } k1 = (double)(width - 2 * yoyu_x) / (max_x - min_x); if (it.display == 3) k2 = (double)(height - yoyu_y - next) / (max_y - min_y); else k2 = (double)(height - yoyu_y - yoyu_x) / (max_y - min_y); ritu = (k1 < k2) ? k1 : k2; // ボタンの設定とWindowサイズ if (it.display == 3) { // パネルクラスの定義 Panel pnl = new Panel(); // Next ボタンの設定 Button bt = new Button("Next"); bt.addMouseListener(new ClickMouse()); pnl.add(bt); add("South", pnl); // ウィンドウの構成要素をパック pack(); // 指定された大きさにWindowサイズを変更 width = 2 * yoyu_x + (int)(ritu * (max_x - min_x)); height = yoyu_y + next + (int)(ritu * (max_y - min_y)); } else { // 指定された大きさにWindowサイズを変更 width = 2 * yoyu_x + (int)(ritu * (max_x - min_x)); height = yoyu_y + yoyu_x + (int)(ritu * (max_y - min_y)); } setSize(width, height); // ウィンドウを表示 setVisible(true); // イベントアダプタ addWindowListener(new WinEnd()); } /************/ /* 描画指示 */ /************/ void Draw() { repaint(); } /********/ /* 描画 */ /********/ public void paint (Graphics g) { int i1, k, n1, n2, size = 6, x1, x2, y1, y2; Font f; // 距離の表示 f = new Font("TimesRoman", Font.BOLD, 25); g.setFont(f); if (it.seisu > -2) g.drawString("Length : "+Integer.toString((int)it.range), yoyu_x, yoyu_y-30); else g.drawString("Length : "+Integer.toString((int)(it.range+0.5)), yoyu_x, yoyu_y-30); // 都市番号のフォントサイズ if (font > 0) { f = new Font("TimesRoman", Font.PLAIN, font); g.setFont(f); } // 点と直線のプロット k = size / 2; for (i1 = 0; i1 < it.n_city; i1++) { n2 = it.seq[i1]; x2 = yoyu_x + (int)(ritu * (it.city[n2][0] - min_x)); y2 = yoyu_y + (int)(ritu * (max_y - it.city[n2][1])); g.fillOval(x2, y2, size, size); if (font > 0) g.drawString(Integer.toString(n2), x2+k, y2-k); if (i1 > 0) { n1 = it.seq[i1-1]; x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x)); y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1])); g.drawLine(x1+k, y1+k, x2+k, y2+k); if (i1 == it.n_city-1) { n1 = it.seq[0]; x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x)); y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1])); g.drawLine(x1+k, y1+k, x2+k, y2+k); } } } // 交換した元の枝を赤く描く if (it.display == 3 && it.n_eg > 0) { g.setColor(Color.red); for (i1 = 0; i1 < it.n_eg; i1++ ) { n1 = it.eg[2*i1]; x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x)); y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1])); n2 = it.eg[2*i1+1]; x2 = yoyu_x + (int)(ritu * (it.city[n2][0] - min_x)); y2 = yoyu_y + (int)(ritu * (max_y - it.city[n2][1])); g.drawLine(x1+k, y1+k, x2+k, y2+k); } } } /**********************************/ /* nextボタンが押されたときの処理 */ /**********************************/ class ClickMouse extends MouseAdapter { /************************************/ /* マウスがクリックされたときの処理 */ /************************************/ public void mouseClicked(MouseEvent e) { int sw = it.Change(); if (sw > 0) it.n_tri++; else it.n_eg = 0; repaint(); } } /************/ /* 終了処理 */ /************/ class WinEnd extends WindowAdapter { public void windowClosing(WindowEvent e) { System.exit(0); } } } public class Test { /****************/ /* main program */ /****************/ public static void main(String args[]) throws IOException, FileNotFoundException { double mean; int i0, i1, n, nm, max; String i_file, line; Partition pt; StringTokenizer dt; PrintStream out = null; BufferedReader in = new BufferedReader(new FileReader(args[0])); // 入力ミス if (args.length == 0) { System.out.print("***error ファイル名を入力して下さい\n"); System.exit(1); } // 入力OK else { // 入力データファイル名と問題数 line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); nm = Integer.parseInt(dt.nextToken()); for (i0 = 0; i0 < nm; i0++) { // 各問題の実行 line = in.readLine(); dt = new StringTokenizer(line, " "); dt.nextToken(); i_file = dt.nextToken(); dt.nextToken(); n = Integer.parseInt(dt.nextToken()); pt = new Partition(i_file); mean = 0.0; max = -1; // 乱数の初期値を変える for (i1 = 0; i1 < n; i1++) { System.out.println("\n+++++問題 " + i_file + "+++++"); // 最適化 pt.Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値 // 最適値とその平均の計算 mean += pt.Max; if (max < 0 || pt.Max < max) max = pt.Max; } // 結果 if (pt.out_m <= 0) System.out.println(" -----最小 " + max + " 平均 " + mean/n + "-----"); else { out = new PrintStream(new FileOutputStream(pt.o_file, true)); out.println(" -----最小 " + max + " 平均 " + mean/n + "-----"); out.close(); } } in.close(); } } } //------------------------ケーススタディデータ(data_j.txt)------ /* 問題の数 2 問題 data1_j.txt 繰り返し回数 2 問題 data2_j.txt 繰り返し回数 1 */ //---------------------データファイル(data1_j.txt)------------ /* 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 図示(0:しない,1:結果,2:初期状態と結果,3:ステップ) 3 都市番号 0 図の大きさ(幅,高さ) 1000 750 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 */ //---------------------データファイル(data2_j.txt)------------ /* 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 図示(0:しない,1:結果,2:初期状態と結果,3:ステップ) 3 都市番号 0 図の大きさ(幅,高さ) 1000 750 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 */
<?php /****************************/ /* 巡回セールスマン問題 */ /* (分割法) */ /* coded by Y.Suganuma */ /****************************/ /*************************/ /* クラスPartitionの定義 */ /*************************/ class Partition { private $city; //都市の位置データ private $city_i; //都市の位置データ(作業領域) private $p_x; // x軸の分割点 private $p_y; // y軸の分割点 private $rg; // 都市間の距離 private $seed; // 乱数の初期値 private $fix; // =1 : 近傍を固定 // =0 : 近傍を可変 private $max_try; // 最大試行回数 private $n_city; // 都市の数 private $n_seq; // 各領域の都市数 private $n_seq1; // 各領域の都市数(ワーク) private $n_p_x; // x軸方向の分割数 private $n_p_y; // y軸方向の分割数 private $seq; // 経路 private $seq1; // 経路(ワーク) private $seq_w1; // 作業領域 private $seq_w2; // 作業領域 private $neib; // 近傍(2 or 3) private $seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) private $sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 private $state; // 領域結合用ワーク private $i_file; // 入力ファイル名 public $Max; // 最適経路の長さ public $out_m; // 出力方法 // =-1 : ディスプレイ(経路長だけ) // =0 : ディスプレイ // =1 : ファイル // =2 : ファイル(経路長だけ) public $o_file; // 出力ファイル名 /**************************/ /* コンストラクタ */ /* name : ファイル名 */ /**************************/ function Partition($name) { $max = 0; // ファイルのオープン $this->i_file = $name; $in = fopen($name, "r"); if ($in == NULL) exit("***error データファイル名が不適当\n"); // 基本データ fscanf($in, "%*s %d %*s %d %*s %d %*s %d", $this->n_city, $this->sel, $this->neib, $this->seisu); fscanf($in, "%*s %d %*s %s", $this->out_m, $this->o_file); fscanf($in, "%*s %*s %d %*s %d %*s %d", $this->n_p_x, $this->n_p_y, $this->max_try); if ($this->neib < 0) { $this->neib = -$this->neib; $this->fix = 0; } else $this->fix = 1; // 都市の位置データ $this->city = array($this->n_city); for ($i1 = 0; $i1 < $this->n_city; $i1++) { $this->city[$i1] = array(2); fscanf($in, "%f %f", $this->city[$i1][0], $this->city[$i1][1]); } // ファイルのクローズ fclose($in); // 距離テーブルの作成 $this->rg = array($this->n_city); for ($i1 = 0; $i1 < $this->n_city; $i1++) { $this->rg[$i1] = array($this->n_city); for ($i2 = $i1+1; $i2 < $this->n_city; $i2++) { $x = $this->city[$i2][0] - $this->city[$i1][0]; $y = $this->city[$i2][1] - $this->city[$i1][1]; $this->rg[$i1][$i2] = sqrt($x * $x + $y * $y); if ($this->seisu > -2) $this->rg[$i1][$i2] = round($this->rg[$i1][$i2]); } } for ($i1 = 1; $i1 < $this->n_city; $i1++) { for ($i2 = 0; $i2 < $i1; $i2++) $this->rg[$i1][$i2] = $this->rg[$i2][$i1]; } // 作業領域 $this->state = array($this->n_p_y); $this->n_seq = array($this->n_p_y); $this->n_seq1 = array($this->n_p_y); for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { $this->n_seq[$i1] = array($this->n_p_x); $this->n_seq1[$i1] = array($this->n_p_x); $this->state[$i1] = array($this->n_p_x); } $this->seq = array($this->n_p_y); $this->seq1 = array($this->n_p_y); for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { $this->seq[$i1] = array($this->n_p_x); $this->seq1[$i1] = array($this->n_p_x); } $this->seq_w1 = array($this->n_city); $this->seq_w2 = array($this->n_city); $this->p_x = array($this->n_p_x); $this->p_y = array($this->n_p_y); // 都市の分割 for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq_w1[$i1] = 0; $min_x = $this->city[0][0]; $max_x = $this->city[0][0]; $min_y = $this->city[0][1]; $max_y = $this->city[0][1]; for ($i1 = 1; $i1 < $this->n_city; $i1++) { if ($this->city[$i1][0] < $min_x) $min_x = $this->city[$i1][0]; else { if ($this->city[$i1][0] > $max_x) $max_x = $this->city[$i1][0]; } if ($this->city[$i1][1] < $min_y) $min_y = $this->city[$i1][1]; else { if ($this->city[$i1][1] > $max_y) $max_y = $this->city[$i1][1]; } } $s_x = ($max_x - $min_x) / $this->n_p_x; $this->p_x[0] = $min_x + $s_x; $this->p_x[$this->n_p_x-1] = $max_x; for ($i1 = 1; $i1 < $this->n_p_x-1; $i1++) $this->p_x[$i1] = $this->p_x[0] + $i1 * $s_x; $s_y = ($max_y - $min_y) / $this->n_p_y; $this->p_y[0] = $min_y + $s_y; $this->p_y[$this->n_p_y-1] = $max_y; for ($i1 = 1; $i1 < $this->n_p_y-1; $i1++) $this->p_y[$i1] = $this->p_y[0] + $i1 * $s_y; for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) { $n = 0; for ($i3 = 0; $i3 < $this->n_city; $i3++) { if ($this->seq_w1[$i3] == 0) { if ($this->city[$i3][0] <= $this->p_x[$i2] && $this->city[$i3][1] <= $this->p_y[$i1]) { $this->seq_w1[$i3] = 1; $this->seq_w2[$n] = $i3; $n++; } } } $this->n_seq1[$i1][$i2] = $n; if ($n > 0) { $this->seq[$i1][$i2] = array($this->n_city); $this->seq1[$i1][$i2] = array($this->n_city); for ($i3 = 0; $i3 < $n; $i3++) $this->seq1[$i1][$i2][$i3] = $this->seq_w2[$i3]; if ($n > $max) $max = $n; } } } // 作業領域 printf("最大都市数 %d\n", $max); $this->city_i = array($max); for ($i1 = 0; $i1 < $max; $i1++) $this->city_i[$i1] = array(2); } /******************************/ /* 最適化の実行 */ /* seed_i : 乱数の初期値 */ /******************************/ function Optimize($seed_i) { $r = 0; // 初期設定 $this->seed = $seed_i; mt_srand($seed_i); // 分割数と開始時間の出力 if ($this->out_m > 0) $this->Output(0, $r); for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) { $this->n_seq[$i1][$i2] = $this->n_seq1[$i1][$i2]; for ($i3 = 0; $i3 < $this->n_seq1[$i1][$i2]; $i3++) $this->seq[$i1][$i2][$i3] = $this->seq1[$i1][$i2][$i3]; } } // 分割毎の最適化 for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) { if ($this->n_seq[$i1][$i2] > 3) { // 近傍の大きさ $nb = ($this->n_seq[$i1][$i2] > 3) ? $this->neib : 2; // 都市位置データの設定 for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++) { $k = $this->seq[$i1][$i2][$i3]; $this->city_i[$i3][0] = $this->city[$k][0]; $this->city_i[$i3][1] = $this->city[$k][1]; } // 最適化 $it = new Iteration ($this->n_seq[$i1][$i2], $this->max_try, $this->seisu, $this->sel, $nb, $this->fix, 0, -1, 0, $this->o_file, $this->city_i); $max = $it->Optimize(); // 結果の保存 for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++) { $k = $it->seq[$i3]; $this->seq_w1[$i3] = $this->seq[$i1][$i2][$k]; } for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++) $this->seq[$i1][$i2][$i3] = $this->seq_w1[$i3]; // 出力 $r = ($this->seisu > -2) ? intval(kyori($this->n_seq[$i1][$i2], $this->seq[$i1][$i2], $this->rg)) : round((kyori($this->n_seq[$i1][$i2], $this->seq[$i1][$i2], $this->rg))); printf(" y %d x %d $this->n_city %d range %d (trial %d)\n", $i1+1, $i2+1, $this->n_seq[$i1][$i2], $r, $max); } } } // 経路の接続 $r = $this->Connect(); // 出力 $this->Output($this->n_city, $r); } /***********************/ /* 出力 */ /* n_c : 都市の数 */ /* r : 距離 */ /***********************/ function Output($n_c, $r) { $k = 0; if ($this->out_m <= 0) { $out = STDOUT; fwrite($out, "距離 ".$r."\n"); fgets(STDIN); } else { $x = getdate(); $now = $x["hours"]."時".$x["minutes"]."分".$x["seconds"]."秒"; $out = fopen($this->o_file, "ab"); if ($n_c > 0) { printf("距離 %d\n", $r); fwrite($out, " 距離 ".$r." 時間 ".$now."\n"); } else fwrite($out, "問題 ".$this->i_file." 乱数 ".$this->seed." 分割 ".$this->n_p_x." ".$this->n_p_y." 時間 ".$now."\n"); } if ($n_c > 0 && ($this->out_m == 0 || $this->out_m == 1)) { for ($i1 = 0; $i1 < $n_c; $i1++) { $n = $this->seq_w1[$i1]; if ($this->seisu > 0) fwrite($out, " ".$n." ".intval($this->city[$n][0])." ".intval($this->city[$n][1])."\n"); else fwrite($out, " ".$n." ".$this->city[$n][0]." ".$this->city[$n][1]."\n"); if ($this->out_m == 0) { $k++; if ($k == 10) { fgets(STDIN); $k = 0; } } } } if ($this->out_m > 0) fclose($out); } /************************/ /* 分割された領域の接続 */ /************************/ function Connect() { $min = 0; $k1 = 0; $k2 = 0; $k3 = 0; $k4 = 0; $min_c = 0; $r1 = 0; $r2 = 0; $r3 = 0; $r4 = 0; $s1 = 0; $s2 = 0; $sw = 1; /* 領域が1つの場合 */ if ($this->n_p_x == 1 && $this->n_p_y == 1) { for ($i1 = 0; $i1 < $this->n_seq[0][0]; $i1++) $this->seq_w1[$i1] = $this->seq[0][0][$i1]; } /* 初期設定 */ else { for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) $this->state[$i1][$i2] = ($this->n_seq[$i1][$i2] > 0) ? 0 : 1; } /* 実行 */ while ($sw > 0) { // 最小節点領域 $min_c = $this->n_city; $sw = 0; for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) { if ($this->state[$i1][$i2] == 0 && $this->n_seq[$i1][$i2] < $min_c) { $sw = 1; $r1 = $i1; $r2 = $i2; $min_c = $this->n_seq[$i1][$i2]; } } } // 結合する対象領域の決定 if ($sw > 0) { $sw = 0; for ($i1 = 0; $i1 < $this->n_p_y; $i1++) { for ($i2 = 0; $i2 < $this->n_p_x; $i2++) { if ($this->state[$i1][$i2] == 0 && ($i1 != $r1 || $i2 != $r2)) { // 節点の数>2 if ($this->n_seq[$r1][$r2] > 1) { for ($i3 = 0; $i3 < $this->n_seq[$r1][$r2]; $i3++) { $k1 = $this->seq[$r1][$r2][$i3]; $k2 = ($i3 == $this->n_seq[$r1][$r2]-1) ? $this->seq[$r1][$r2][0] : $this->seq[$r1][$r2][$i3+1]; $wd1 = $this->rg[$k1][$k2]; for ($i4 = 0; $i4 < $this->n_seq[$i1][$i2]; $i4++) { $k3 = $this->seq[$i1][$i2][$i4]; $k4 = ($i4 == $this->n_seq[$i1][$i2]-1) ? $this->seq[$i1][$i2][0] : $this->seq[$i1][$i2][$i4+1]; $wd = $wd1 + $this->rg[$k3][$k4]; $wa1 = $this->rg[$k1][$k3] + $this->rg[$k2][$k4]; $wa2 = $this->rg[$k1][$k4] + $this->rg[$k2][$k3]; if ($sw == 0 || $wa1-$wd < $min) { $min = $wa1 - $wd; $r3 = $i1; $r4 = $i2; $s1 = ($i3 == $this->n_seq[$r1][$r2]-1) ? 0 : $i3 + 1; $s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1; $sw = -1; } if ($sw == 0 || $wa2-$wd < $min) { $min = $wa2 - $wd; $r3 = $i1; $r4 = $i2; $s1 = $i3; $s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1; $sw = 1; } } } } // 節点の数=1 else { $k1 = $this->seq[$r1][$r2][0]; if ($this->n_seq[$i1][$i2] > 1) { for ($i4 = 0; $i4 < $this->n_seq[$i1][$i2]; $i4++) { $k3 = $this->seq[$i1][$i2][$i4]; $k4 = ($i4 == $this->n_seq[$i1][$i2]-1) ? $this->seq[$i1][$i2][0] : $this->seq[$i1][$i2][$i4+1]; $wd = $this->rg[$k3][$k4]; $wa1 = $this->rg[$k1][$k3] + $this->rg[$k1][$k4]; if ($sw == 0 || $wa1-$wd < $min) { $min = $wa1 - $wd; $r3 = $i1; $r4 = $i2; $s1 = 0; $s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1; $sw = 1; } } } else { $k3 = $this->seq[$i1][$i2][0]; $wa1 = $this->rg[$k1][$k3]; if ($sw == 0 || $wa1 < $min) { $min = $wa1; $r3 = $i1; $r4 = $i2; $s1 = 0; $s2 = 0; $sw = 1; } } } } } } // 領域の結合 $this->seq_w1[0] = $this->seq[$r1][$r2][$s1]; $k = 1; $n = $s2; for ($i1 = 0; $i1 < $this->n_seq[$r3][$r4]; $i1++) { $this->seq_w1[$k] = $this->seq[$r3][$r4][$n]; $k++; $n++; if ($n > $this->n_seq[$r3][$r4]-1) $n = 0; } if ($sw > 0) { $n = $s1 + 1; for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]-1; $i1++) { if ($n > $this->n_seq[$r1][$r2]-1) $n = 0; $this->seq_w1[$k] = $this->seq[$r1][$r2][$n]; $k++; $n++; } } else { $n = $s1 - 1; for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]-1; $i1++) { if ($n < 0) $n = $this->n_seq[$r1][$r2] - 1; $this->seq_w1[$k] = $this->seq[$r1][$r2][$n]; $k++; $n--; } } // 状態の変更 $this->n_seq[$r1][$r2] += $this->n_seq[$r3][$r4]; $this->state[$r3][$r4] = 1; for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]; $i1++) $this->seq[$r1][$r2][$i1] = $this->seq_w1[$i1]; $sw = 1; } } } $r = ($this->seisu > -2) ? intval(kyori($this->n_city, $this->seq_w1, $this->rg)) : round(kyori($this->n_city, $this->seq_w1, $this->rg)); $this->Max = $r; return $r; } } /*************************/ /* クラスIterationの定義 */ /*************************/ class Iteration { private $city; //都市の位置データ private $rg; // 都市間の距離 private $fix; // =1 : 近傍を固定 // =0 : 近傍を可変 private $max_try; // 最大試行回数 private $n_city; // 都市の数 private $out_d; // 表示間隔 private $seq_w1; // 都市を訪れる順序(ワーク) private $seq_w2; // 都市を訪れる順序(ワーク) private $seq_w3; // 都市を訪れる順序(ワーク) private $seq_w4; // 都市を訪れる順序(ワーク) private $seq_w5; // 都市を訪れる順序(ワーク) private $neib; // 近傍(2 or 3) private $out_lvl; // 出力レベル // =0 : 最終出力だけ // n>0 : n世代毎に出力(負の時はファイル) private $out_m; // 出力方法 // =-1 : 出力しない // =0 : すべてを出力 // =1 : 評価値だけを出力(最終結果だけはすべてを出力) private $seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) private $sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 private $o_file; // 出力ファイル名 public $seq; // 都市を訪れる順序 /**********************************/ /* コンストラクタ */ /* n_city_i : 都市の数 */ /* max_try_i : 最大試行回数 */ /* sei_i : 整数 or 実数 */ /* sel_i : エッジの選択方法 */ /* neib_i : 近傍 */ /* fix_i : 近傍の扱い方 */ /* out_lvl_i : 出力レベル */ /* out_m_i : 出力方法 */ /* out_d_i : 表示間隔 */ /* o_file_i : 出力ファイル名 */ /* city_i : 都市の位置データ */ /**********************************/ function Iteration ($n_city_i, $max_tri_i, $sei_i, $sel_i, $neib_i, $fix_i, $out_lvl_i, $out_m_i, $out_d_i, $o_file_i, $city_i) { // 値の設定 $this->n_city = $n_city_i; $this->max_try = $max_tri_i; $this->seisu = $sei_i; $this->sel = $sel_i; $this->neib = $neib_i; $this->fix = $fix_i; $this->out_lvl = $out_lvl_i; $this->out_m = $out_m_i; $this->out_d = $out_d_i; $this->o_file = $o_file_i; // 都市の位置データ $this->city = array($this->n_city); for ($i1 = 0; $i1 < $this->n_city; $i1++) { $this->city[$i1] = array(2); $this->city[$i1][0] = $city_i[$i1][0]; $this->city[$i1][1] = $city_i[$i1][1]; } // 距離テーブルの作成 $this->rg = array($this->n_city); for ($i1 = 0; $i1 < $this->n_city; $i1++) { $this->rg[$i1] = array($this->n_city); for ($i2 = $i1+1; $i2 < $this->n_city; $i2++) { $x = $this->city[$i2][0] - $this->city[$i1][0]; $y = $this->city[$i2][1] - $this->city[$i1][1]; $this->rg[$i1][$i2] = sqrt($x * $x + $y * $y); if ($this->seisu > -2) $this->rg[$i1][$i2] = round($this->rg[$i1][$i2]); } } for ($i1 = 1; $i1 < $this->n_city; $i1++) { for ($i2 = 0; $i2 < $i1; $i2++) $this->rg[$i1][$i2] = $this->rg[$i2][$i1]; } // 都市を訪れる順序(初期設定) $this->seq = array($this->n_city); $this->seq_w1 = array($this->n_city); $this->seq_w2 = array($this->n_city); $this->seq_w3 = array($this->n_city); $this->seq_w4 = array($this->n_city); $this->seq_w5 = array($this->n_city); for ($i1 = 0; $i1 < $this->n_city; $i1++) { $sw = 0; while ($sw == 0) { $ct = intval((mt_rand() / mt_getrandmax()) * $this->n_city); if ($ct >= $this->n_city) $ct = $this->n_city - 1; $this->seq[$i1] = $ct; $sw = 1; for ($i2 = 0; $i2 < $i1 && $sw > 0; $i2++) { if ($ct == $this->seq[$i2]) $sw = 0; } } } } /****************/ /* 最適化の実行 */ /****************/ function Optimize() { // 初期設定 $n_tri = 0; $max = kyori($this->n_city, $this->seq, $this->rg); if ($this->out_m >= 0 && abs($this->out_lvl) > 0) { if ($this->seisu > -2) printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max)); else printf("***試行回数 %d 距離 %f\n", $n_tri, $max); $this->Output($this->out_lvl, $n_tri, $max); } // 実行 $sw = 1; for ($n_tri = 1; $n_tri <= $this->max_try && $sw > 0; $n_tri++) { // 改善 $sw = $this->Change($max); // 出力 if ($this->out_d > 0 && $n_tri%$this->out_d == 0) { if ($this->seisu > -2) printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max)); else printf("***試行回数 %d 距離 %f\n", $n_tri, $max); } if ($this->out_m >= 0 && abs($this->out_lvl) > 0) { if ($n_tri%abs($this->out_lvl) == 0) $this->Output($this->out_lvl, $n_tri, $max); } } // 最終出力 if ($this->out_m >= 0) { $n_tri--; if ($this->seisu > -2) printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max)); else printf("***試行回数 %d 距離 %f\n", $n_tri, $max); $this->Output($this->out_lvl, $n_tri, $max); } return $n_tri; } /*******************************/ /* 出力 */ /* sw : >=0 : 出力先未定 */ /* < 0 : ファイル */ /* n_tri : 現在の試行回数 */ /* r : 距離 */ /*******************************/ function Output($sw, $n_tri, $r) { $k = 0; if ($sw >= 0) { printf(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? "); scanf(STDIN, "%d", $pr); } else $pr = -1; if ($pr != 0) { if ($pr > 0) { $out = STDOUT; fgets(STDIN); } else { $x = getdate(); $now = $x["hours"]."時".$x["minutes"]."分".$x["seconds"]."秒"; $out = fopen($this->o_file, "ab"); if ($this->seisu > -2) fwrite($out, "***試行回数 ".$n_tri." 距離 ".intval($r)." 時間 ".$now."\n"); else fwrite($out, "***試行回数 ".$n_tri." 距離 ".round($r)." 時間 ".$now."\n"); } if ($this->out_m == 0) { for ($i1 = 0; $i1 < $this->n_city; $i1++) { $n = $this->seq[$i1]; if ($this->seisu > 0) fwrite($out, " ".$n." ".intval($this->city[$n][0])." ".intval($this->city[$n][1])."\n"); else fwrite($out, " ".$n." ".$this->city[$n][0]." ".$this->city[$n][1]."\n"); if ($pr > 0) { $k++; if ($k == $pr) { fgets(STDIN); $k = 0; } } } } if ($pr <= 0) fclose($out); } } /**************************************/ /* エッジの入れ替え */ /* r_m : 距離 */ /* return : =0 : 改善がなかった */ /* =1 : 改善があった */ /**************************************/ function Change(&$r_m) { $max1 = 0.0; $ch = 0; $k1 = 0; $k2 = 0; $n1 = 0; $n2 = 0; $sw = 0; $sw1 = 0; $max = $r_m; /* 近傍を可変 */ if ($this->fix == 0) { // 初期設定(k=2) $k = 2; for ($i1 = 0; $i1 < $this->n_city; $i1++) { $this->seq_w4[$i1] = $this->seq[$i1]; $this->seq_w3[$i1] = 0; } // 評価 $sw2 = 0; for ($i0 = 0; $i0 < $this->n_city-2 && $sw2 < 2; $i0++) { $n = ($i0 == 0) ? $this->n_city-1 : $this->n_city; for ($i1 = $i0+2; $i1 < $n && $sw2 < 2; $i1++) { // 相手の場所 $k3 = $i1; $k4 = $k3 + 1; if ($k4 > $this->n_city-1) $k4 = 0; // 順番の入れ替え $n3 = -1; for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) { if ($this->seq_w4[$i2] == $this->seq[$i0+1]) $n3 = $i2 + 1; } $nn = $n3; $n4 = -1; for ($i2 = 0; $i2 < $this->n_city && $n4 < 0; $i2++) { if ($nn > $this->n_city-1) $nn = 0; if ($this->seq_w4[$nn] == $this->seq[$k3] || $this->seq_w4[$nn] == $this->seq[$k4]) $n4 = $this->seq_w4[$nn]; else $nn++; } if ($n4 == $this->seq[$k4]) { $n4 = $k3; $k3 = $k4; $k4 = $n4; } // 評価 $this->seq_w1[0] = $this->seq[$k4]; $this->seq_w1[1] = $this->seq[$i0+1]; $n4 = -1; $nn = 2; while ($n4 < 0) { if ($n3 > $this->n_city-1) $n3 = 0; $this->seq_w1[$nn] = $this->seq_w4[$n3]; if ($this->seq_w4[$n3] == $this->seq[$k3]) $n4 = 1; $nn++; $n3++; } $this->seq_w1[$nn] = $this->seq[$i0]; $nn++; $n3 = -1; $n4 = -1; for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) { if ($this->seq_w4[$i2] == $this->seq[$i0]) { $n3 = $i2 - 1; if ($n3 < 0) $n3 = $this->n_city - 1; } } while ($n4 < 0) { if ($this->seq_w4[$n3] == $this->seq[$k4]) $n4 = 1; else { $this->seq_w1[$nn] = $this->seq_w4[$n3]; $nn++; $n3--; if ($n3 < 0) $n3 = $this->n_city - 1; } } $r = kyori($this->n_city, $this->seq_w1, $this->rg); // 最適値の保存 if ($sw2 == 0 || $r < $max1) { $sw2 = 1; $max1 = $r; $n1 = $k3; $n2 = $k4; $k1 = $i0; $k2 = $i0 + 1; for ($i2 = 0; $i2 < $this->n_city; $i2++) $this->seq_w5[$i2] = $this->seq_w1[$i2]; if ($this->sel > 0 && $max1 < $max) $sw2 = 2; } } } // 最適値の保存と近傍の増加 if ($sw2 > 0) { if ($max1 < $max) { $sw = 1; $max = $max1; for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq_w2[$i1] = $this->seq_w5[$i1]; } if ($k < $this->neib) { for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq_w4[$i1] = $this->seq_w5[$i1]; $this->seq_w3[$k1] = 1; $this->seq_w3[$k2] = 1; $this->seq_w3[$n1] = 1; $this->seq_w3[$n2] = 1; $k1 = $n2; $k++; } else $sw1 = 1; } else $sw1 = 1; // 実行(k>2) while ($sw1 == 0) { // 評価 $sw2 = 0; for ($i1 = 0; $i1 < $this->n_city; $i1++) { // 相手の場所 $k3 = $i1; $k4 = $k3 + 1; if ($k4 > $this->n_city-1) $k4 = 0; if ($this->seq_w3[$k3] == 0 && $this->seq_w3[$k4] == 0) { // 順番の入れ替え $n3 = -1; for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) { if ($this->seq_w4[$i2] == $this->seq[$k2]) $n3 = $i2 + 1; } $nn = $n3; $n4 = -1; for ($i2 = 0; $i2 < $this->n_city && $n4 < 0; $i2++) { if ($nn > $this->n_city-1) $nn = 0; if ($this->seq_w4[$nn] == $this->seq[$k3] || $this->seq_w4[$nn] == $this->seq[$k4]) $n4 = $this->seq_w4[$nn]; else $nn++; } if ($n4 == $this->seq[$k4]) { $n4 = $k3; $k3 = $k4; $k4 = $n4; } // 評価 $this->seq_w1[0] = $this->seq[$k4]; $this->seq_w1[1] = $this->seq[$k2]; $n4 = -1; $nn = 2; while ($n4 < 0) { if ($n3 > $this->n_city-1) $n3 = 0; $this->seq_w1[$nn] = $this->seq_w4[$n3]; if ($this->seq_w4[$n3] == $this->seq[$k3]) $n4 = 1; $nn++; $n3++; } $this->seq_w1[$nn] = $this->seq[$k1]; $nn++; $n3 = -1; $n4 = -1; for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) { if ($this->seq_w4[$i2] == $this->seq[$k1]) { $n3 = $i2 - 1; if ($n3 < 0) $n3 = $this->n_city - 1; } } while ($n4 < 0) { if ($this->seq_w4[$n3] == $this->seq[$k4]) $n4 = 1; else { $this->seq_w1[$nn] = $this->seq_w4[$n3]; $nn++; $n3--; if ($n3 < 0) $n3 = $this->n_city - 1; } } $r = kyori($this->n_city, $this->seq_w1, $this->rg); // 最適値の保存 if ($sw2 == 0 || $r < $max1) { $sw2 = 1; $max1 = $r; $n1 = $k3; $n2 = $k4; for ($i2 = 0; $i2 < $this->n_city; $i2++) $this->seq_w5[$i2] = $this->seq_w1[$i2]; } } } // 最適値の保存と近傍の増加 if ($sw2 > 0) { if ($max1 < $max) { $sw = 1; $max = $max1; for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq_w2[$i1] = $this->seq_w5[$i1]; } if ($k < $this->neib) { for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq_w4[$i1] = $this->seq_w5[$i1]; $this->seq_w3[$n1] = 1; $this->seq_w3[$n2] = 1; $k1 = $n2; $k++; } else $sw1 = 1; } else $sw1 = 1; } } /* 近傍を固定 */ else { $n3 = intval((mt_rand() / mt_getrandmax()) * ($this->n_city - 2)); if ($n3 > $this->n_city-3) $n3 = $this->n_city - 3; // 2近傍 for ($i1 = 0; $i1 <= $this->n_city-3 && $ch == 0; $i1++) { if ($n3 == 0) $n1 = $this->n_city - 2; else $n1 = $this->n_city - 1; for ($i2 = $n3+2; $i2 <= $n1 && $ch == 0; $i2++) { // 枝の場所((n3,n3+1), (k1,k2)) $k1 = $i2; if ($i2 == $this->n_city-1) $k2 = 0; else $k2 = $i2 + 1; // 枝の入れ替え $this->seq_w1[0] = $this->seq[$n3]; $k = 1; for ($i3 = $k1; $i3 >= $n3+1; $i3--) { $this->seq_w1[$k] = $this->seq[$i3]; $k++; } $nn = $k2; while ($nn != $n3) { $this->seq_w1[$k] = $this->seq[$nn]; $k++; $nn++; if ($nn > $this->n_city-1) $nn = 0; } // 評価 $r = kyori($this->n_city, $this->seq_w1, $this->rg); if ($r < $max) { $max = $r; $sw = 1; for ($i3 = 0; $i3 < $this->n_city; $i3++) $this->seq_w2[$i3] = $this->seq_w1[$i3]; if ($this->sel > 0) $ch = 1; } } $n3++; if ($n3 > $this->n_city-3) $n3 = 0; } // 3近傍 if ($this->neib == 3 && $ch == 0) { for ($i1 = 0; $i1 <= $this->n_city-3 && $ch == 0; $i1++) { $n1 = $this->n_city - 2; $n2 = $this->n_city - 1; for ($i2 = $n3+1; $i2 <= $n1 && $ch == 0; $i2++) { for ($i3 = $i2+1; $i3 <= $n2 && $ch == 0; $i3++) { // 枝の場所((n3,n3+1), ($i2,$i2+1), (k1,k2)) $k1 = $i3; if ($i3 == $this->n_city-1) $k2 = 0; else $k2 = $i3 + 1; // 枝の入れ替えと評価 // 入れ替え(その1) $this->seq_w1[0] = $this->seq[$n3]; $k = 1; for ($i4 = $i2; $i4 >= $n3+1; $i4--) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } for ($i4 = $k1; $i4 >= $i2+1; $i4--) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } $nn = $k2; while ($nn != $n3) { $this->seq_w1[$k] = $this->seq[$nn]; $k++; $nn++; if ($nn > $this->n_city-1) $nn = 0; } // 評価(その1) $r = kyori($this->n_city, $this->seq_w1, $this->rg); if ($r < $max) { $max = $r; $sw = 1; for ($i3 = 0; $i3 < $this->n_city; $i3++) $this->seq_w2[$i3] = $this->seq_w1[$i3]; if ($this->sel > 0) $ch = 1; } // 入れ替え(その2) $this->seq_w1[0] = $this->seq[$n3]; $k = 1; for ($i4 = $k1; $i4 >= $i2+1; $i4--) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } for ($i4 = $n3+1; $i4 <= $i2; $i4++) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } $nn = $k2; while ($nn != $n3) { $this->seq_w1[$k] = $this->seq[$nn]; $k++; $nn++; if ($nn > $this->n_city-1) $nn = 0; } // 評価(その2) $r = kyori($this->n_city, $this->seq_w1, $this->rg); if ($r < $max) { $max = $r; $sw = 1; for ($i3 = 0; $i3 < $this->n_city; $i3++) $this->seq_w2[$i3] = $this->seq_w1[$i3]; if ($this->sel > 0) $ch = 1; } // 入れ替え(その3) $this->seq_w1[0] = $this->seq[$n3]; $k = 1; for ($i4 = $i2+1; $i4 <= $k1; $i4++) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } for ($i4 = $i2; $i4 >= $n3+1; $i4--) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } $nn = $k2; while ($nn != $n3) { $this->seq_w1[$k] = $this->seq[$nn]; $k++; $nn++; if ($nn > $this->n_city-1) $nn = 0; } // 評価(その3) $r = kyori($this->n_city, $this->seq_w1, $this->rg); if ($r < $max) { $max = $r; $sw = 1; for ($i3 = 0; $i3 < $this->n_city; $i3++) $this->seq_w2[$i3] = $this->seq_w1[$i3]; if ($this->sel > 0) $ch = 1; } // 入れ替え(その4) $this->seq_w1[0] = $this->seq[$n3]; $k = 1; for ($i4 = $i2+1; $i4 <= $k1; $i4++) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } for ($i4 = $n3+1; $i4 <= $i2; $i4++) { $this->seq_w1[$k] = $this->seq[$i4]; $k++; } $nn = $k2; while ($nn != $n3) { $this->seq_w1[$k] = $this->seq[$nn]; $k++; $nn++; if ($nn > $this->n_city-1) $nn = 0; } // 評価(その4) $r = kyori($this->n_city, $this->seq_w1, $this->rg); if ($r < $max) { $max = $r; $sw = 1; for ($i3 = 0; $i3 < $this->n_city; $i3++) $this->seq_w2[$i3] = $this->seq_w1[$i3]; if ($this->sel > 0) $ch = 1; } } } $n3++; if ($n3 > $this->n_city-3) $n3 = 0; } } } // 設定 if ($sw > 0) { $r_m = $max; for ($i1 = 0; $i1 < $this->n_city; $i1++) $this->seq[$i1] = $this->seq_w2[$i1]; } return $sw; } } /*********************************/ /* 距離の計算 */ /* n_c : 都市の数 */ /* p : 都市番号 */ /* rg : 都市間の距離 */ /* return : 距離 */ /*********************************/ function kyori($n_c, $p, $rg) { $range = 0; $n1 = $p[0]; for ($i1 = 1; $i1 < $n_c; $i1++) { $n2 = $p[$i1]; $range += $rg[$n1][$n2]; $n1 = $n2; } $n2 = $p[0]; $range += $rg[$n1][$n2]; return $range; } /****************/ /* main program */ /****************/ // 入力ミス if (count($argv) <= 1) exit("***error ファイル名を入力して下さい\n"); // 入力OK else { // ファイルのオープン $in = fopen($argv[1], "rb"); if ($in == NULL) exit("***error ファイル名が不適当です\n"); // 入力データファイル名と問題数 fscanf($in, "%*s %d", $nm); for ($i0 = 0; $i0 < $nm; $i0++) { // 各問題の実行 fscanf($in, "%*s %s %*s %d", $i_file, $n); $pt = new Partition($i_file); $mean = 0.0; $max = -1; // 乱数の初期値を変える for ($i1 = 0; $i1 < $n; $i1++) { // 問題 printf("\n+++++問題 %s +++++\n", $i_file); // 最適化 $pt->Optimize(1000 * $i1 + 1234567); // 引数は乱数の初期値 // 最適値とその平均の計算 $mean += $pt->Max; if ($max < 0 || $pt->Max < $max) $max = $pt->Max; } // 結果 if ($pt->out_m <= 0) printf(" -----最小 %d 平均 %f-----\n", $max, $mean/$n); else { $out = fopen($pt->o_file, "ab"); $str = sprintf(" -----最小 %d 平均 %f-----\n", $max, $mean/$n); fwrite($out, $str); fclose($out); } } fclose($in); } //------------------------ケーススタディデータ(data.txt)------ /* 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 */ //---------------------データファイル(data1.txt)------------ /* 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 */ //---------------------データファイル(data2.txt)------------ /* 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 */ ?>
################################ # 巡回セールスマン問題(分割法) # coded by Y.Suganuma ################################ ################################# # 距離の計算 # n_c : 都市の数 # p : 都市番号 # rg : 都市間の距離 # return : 距離 ################################# def kyori(n_c, p, rg) r = 0.0 n1 = p[0] for i1 in 1 ... n_c n2 = p[i1] r += rg[n1][n2] n1 = n2 end n2 = p[0] r += rg[n1][n2] return r end ######################### # クラスIterationの定義 ######################### class Iteration ################################### # コンストラクタ # n_city_i 都市の数 # max_try_i 最大試行回数 # sei_i 整数 or 実数 # sel_i エッジの選択方法 # neib_i 近傍 # fix_i 近傍の扱い方 # out_lvl_i 出力レベル # out_m_i 出力方法 # out_d_i 表示間隔 # o_file_i 出力ファイル名 # city_i 都市の位置データ ################################### def initialize(n_city_i, max_tri_i, sei_i, sel_i, neib_i, fix_i, out_lvl_i, out_m_i, out_d_i, o_file_i, city_i) # 値の設定 @_n_city = n_city_i # 都市の数 @_max_try = max_tri_i # 最大試行回数 @_seisu = sei_i # 位置データの表現方法 # =1 整数 # =-1 実数(距離を整数計算) # =-2 実数(距離を実数計算) @_sel = sel_i # エッジの選択方法 # =0 最良のものを選択 # =1 最初のものを選択 @_neib = neib_i # 近傍(2 or 3) @_fix = fix_i # =1 近傍を固定 # =0 近傍を可変 @_out_lvl = out_lvl_i # 出力レベル # =0 最終出力だけ # n>0 n世代毎に出力(負の時はファイル) @_out_m = out_m_i # 出力方法 # =-1 出力しない # =0 すべてを出力 # =1 評価値だけを出力(最終結果だけはすべてを出力) @_out_d = out_d_i # 表示間隔 @_o_file = o_file_i # 出力ファイル名 @_city = city_i # 都市の位置データ # 距離テーブルの作成 @_rg = Array.new(@_n_city) for i1 in 0 ... @_n_city @_rg[i1] = Array.new(@_n_city) end for i1 in 0 ... @_n_city-1 for i2 in i1+1 ... @_n_city x = @_city[i2][0] - @_city[i1][0] y = @_city[i2][1] - @_city[i1][1] @_rg[i1][i2] = Math.sqrt(x * x + y * y) if @_seisu > -2 @_rg[i1][i2] = @_rg[i1][i2].round() end end end for i1 in 1 ... @_n_city for i2 in 0 ... i1 @_rg[i1][i2] = @_rg[i2][i1] end end # 都市を訪れる順序(初期設定) @_seq = Array.new(@_n_city) @_seq_w1 = Array.new(@_n_city) @_seq_w2 = Array.new(@_n_city) @_seq_w3 = Array.new(@_n_city) @_seq_w4 = Array.new(@_n_city) @_seq_w5 = Array.new(@_n_city) for i1 in 0 ... @_n_city sw = 0 while sw == 0 ct = Integer(rand(0) * @_n_city) if ct >= @_n_city ct = @_n_city - 1 end @_seq[i1] = ct sw = 1 for i2 in 0 ... i1 if ct == @_seq[i2] sw = 0 break end end end end end ################ # 最適化の実行 ################ def Optimize () # 初期設定 n_tri = 0 max = Array.new(1) max[0] = kyori(@_n_city, @_seq, @_rg) if @_out_m >= 0 && @_out_lvl.abs() > 0 if @_seisu > -2 print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n") else print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n") end Output(@_out_lvl, n_tri, max[0]) end # 実行 sw = 1 for n_tri in 1 ... @_max_try+1 # 改善 sw = Change(max) # 出力 if @_out_d > 0 and n_tri%@_out_d == 0 if @_seisu > -2 print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n") else print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n") end end if @_out_m >= 0 && @_out_lvl.abs() > 0 if n_tri%@_out_lvl.abs() == 0 Output(@_out_lvl, n_tri, max[0]) end end if sw <= 0 break end end # 最終出力 if @_out_m >= 0 n_tri -= 1 if @_seisu > -2 print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n") else print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n") end Output(@_out_lvl, n_tri, max[0]) end return n_tri end ################################ # 出力 # sw >=0 出力先未定 # <0 ファイル # n_tri 現在の試行回数 # r 距離 ################################ def Output(sw, n_tri, r) k = 0 if sw >= 0 print(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ") pr = Integer($stdin.gets()) else pr = -1 end if pr != 0 if pr > 0 out = $stdout $stdin.gets() else now = String(Time.now) out = open(@_o_file, "a") if @_seisu > -2 out.print("***試行回数 " + String(n_tri) + " 距離 " + String(int(r)) + " 時間 " + now + "\n") else out.print("***試行回数 " + String(n_tri) + " 距離 " + String(r) + " 時間 " + now + "\n") end end if @_out_m == 0 for i1 in 0 ... @_n_city n = @_seq[i1] if @_seisu > 0 out.write(" " + String(n) + " " + String(int(@_city[n][0])) + " " + String(int(@_city[n][1])) + "\n") else out.write(" " + String(n) + " " + String(@_city[n][0]) + " " + String(@_city[n][1]) + "\n") end if pr > 0 k += 1 if k == pr $stdin.gets() k = 0 end end end end if pr <= 0 out.close() end end end ####################################### # エッジの入れ替え # r_m 距離 # return =0 改善がなかった # =1 改善があった ####################################### def Change(r_m) max = r_m[0] max1 = 0.0 ch = 0 k1 = 0 k2 = 0 n1 = 0 n2 = 0 sw = 0 sw1 = 0 # 近傍を可変 if @_fix == 0 # 初期設定(k=2) k = 2 for i1 in 0 ... @_n_city @_seq_w4[i1] = @_seq[i1] @_seq_w3[i1] = 0 end # 評価 sw2 = 0 i0 = 0 while i0 < @_n_city-2 && sw2 < 2 if i0 == 0 n = @_n_city - 1 else n = @_n_city end i1 = i0 + 2 while i1 < n && sw2 < 2 # 相手の場所 k3 = i1 k4 = k3 + 1 if k4 > @_n_city-1 k4 = 0 end # 順番の入れ替え n3 = -1 for i2 in 0 ... @_n_city if @_seq_w4[i2] == @_seq[i0+1] n3 = i2 + 1 break end end nn = n3 n4 = -1 for i2 in 0 ... @_n_city if nn > @_n_city-1 nn = 0 end if @_seq_w4[nn] == @_seq[k3] || @_seq_w4[nn] == @_seq[k4] n4 = @_seq_w4[nn] break else nn += 1 end end if n4 == @_seq[k4] n4 = k3 k3 = k4 k4 = n4 end # 評価 @_seq_w1[0] = @_seq[k4] @_seq_w1[1] = @_seq[i0+1] n4 = -1 nn = 2 while n4 < 0 if n3 > @_n_city-1 n3 = 0 end @_seq_w1[nn] = @_seq_w4[n3] if @_seq_w4[n3] == @_seq[k3] n4 = 1 end nn += 1 n3 += 1 end @_seq_w1[nn] = @_seq[i0] nn += 1 n3 = -1 n4 = -1 for i2 in 0 ... @_n_city if @_seq_w4[i2] == @_seq[i0] n3 = i2 - 1 if n3 < 0 n3 = @_n_city - 1 end break end end while n4 < 0 if @_seq_w4[n3] == @_seq[k4] n4 = 1 else @_seq_w1[nn] = @_seq_w4[n3] nn += 1 n3 -= 1 if n3 < 0 n3 = @_n_city - 1 end end end r = kyori(@_n_city, @_seq_w1, @_rg) # 最適値の保存 if sw2 == 0 || r < max1 sw2 = 1 max1 = r n1 = k3 n2 = k4 k1 = i0 k2 = i0 + 1 for i2 in 0 ... @_n_city @_seq_w5[i2] = @_seq_w1[i2] end if @_sel > 0 && max1 < max sw2 = 2 end end i1 += 1 end i0 += 1 end # 最適値の保存と近傍の増加 if sw2 > 0 if max1 < max sw = 1 max = max1 for i1 in 0 ... @_n_city @_seq_w2[i1] = @_seq_w5[i1] end end if k < @_neib for i1 in 0 ... @_n_city @_seq_w4[i1] = @_seq_w5[i1] end @_seq_w3[k1] = 1 @_seq_w3[k2] = 1 @_seq_w3[n1] = 1 @_seq_w3[n2] = 1 k1 = n2 k += 1 else sw1 = 1 end else sw1 = 1 end # 実行(k>2) while sw1 == 0 # 評価 sw2 = 0 for i1 in 0 ... @_n_city # 相手の場所 k3 = i1 k4 = k3 + 1 if k4 > @_n_city-1 k4 = 0 end if @_seq_w3[k3] == 0 && @_seq_w3[k4] == 0 # 順番の入れ替え n3 = -1 for i2 in 0 ... @_n_city if @_seq_w4[i2] == @_seq[k2] n3 = i2 + 1 break end end nn = n3 n4 = -1 for i2 in 0 ... @_n_city if nn > @_n_city-1 nn = 0 end if @_seq_w4[nn] == @_seq[k3] || @_seq_w4[nn] == @_seq[k4] n4 = @_seq_w4[nn] break else nn += 1 end end if n4 == @_seq[k4] n4 = k3 k3 = k4 k4 = n4 end # 評価 @_seq_w1[0] = @_seq[k4] @_seq_w1[1] = @_seq[k2] n4 = -1 nn = 2 while n4 < 0 if n3 > @_n_city-1 n3 = 0 end @_seq_w1[nn] = @_seq_w4[n3] if @_seq_w4[n3] == @_seq[k3] n4 = 1 end nn += 1 n3 += 1 end @_seq_w1[nn] = @_seq[k1] nn += 1 n3 = -1 n4 = -1 for i2 in 0 ... @_n_city if @_seq_w4[i2] == @_seq[k1] n3 = i2 - 1 if n3 < 0 n3 = @_n_city - 1 end break end end while n4 < 0 if @_seq_w4[n3] == @_seq[k4] n4 = 1 else @_seq_w1[nn] = @_seq_w4[n3] nn += 1 n3 -= 1 if n3 < 0 n3 = @_n_city - 1 end end end r = kyori(@_n_city, @_seq_w1, @_rg) # 最適値の保存 if sw2 == 0 || r < max1 sw2 = 1 max1 = r n1 = k3 n2 = k4 for i2 in 0 ... @_n_city @_seq_w5[i2] = @_seq_w1[i2] end end end end # 最適値の保存と近傍の増加 if sw2 > 0 if max1 < max sw = 1 max = max1 for i1 in 0 ... @_n_city @_seq_w2[i1] = @_seq_w5[i1] end end if k < @_neib for i1 in 0 ... @_n_city @_seq_w4[i1] = @_seq_w5[i1] end @_seq_w3[n1] = 1 @_seq_w3[n2] = 1 k1 = n2 k += 1 else sw1 = 1 end else sw1 = 1 end end # 近傍を固定 else n3 = Integer(rand(0) * (@_n_city - 2)) if n3 > @_n_city-3 n3 = @_n_city - 3 end # 2近傍 i1 = 0 while i1 <= @_n_city-3 && ch == 0 if n3 == 0 n1 = @_n_city - 2 else n1 = @_n_city - 1 end i2 = n3 + 2 while i2 <= n1 && ch == 0 # 枝の場所((n3,n3+1), (k1,k2)) k1 = i2 if i2 == @_n_city-1 k2 = 0 else k2 = i2 + 1 end # 枝の入れ替え @_seq_w1[0] = @_seq[n3] k = 1 i3 = k1 while i3 > n3 @_seq_w1[k] = @_seq[i3] k += 1 i3 -= 1 end nn = k2 while nn != n3 @_seq_w1[k] = @_seq[nn] k += 1 nn += 1 if nn > @_n_city-1 nn = 0 end end # 評価 r = kyori(@_n_city, @_seq_w1, @_rg) if r < max max = r sw = 1 for i3 in 0 ... @_n_city @_seq_w2[i3] = @_seq_w1[i3] end if @_sel > 0 ch = 1 end end i2 += 1 end n3 += 1 if n3 > @_n_city-3 n3 = 0 end i1 += 1 end # 3近傍 if @_neib == 3 && ch == 0 i1 = 0 while i1 <= @_n_city-3 && ch == 0 n1 = @_n_city - 2 n2 = @_n_city - 1 i2 = n3 + 1 while i2 <= n1 && ch == 0 i3 = i2 + 1 while i3 <= n2 && ch == 0 # 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3 if i3 == @_n_city-1 k2 = 0 else k2 = i3 + 1 end # 枝の入れ替えと評価 # 入れ替え(その1) @_seq_w1[0] = @_seq[n3] k = 1 i4 = i2 while i4 > n3 @_seq_w1[k] = @_seq[i4] k += 1 i4 -= 1 end i4 = k1 while i4 > i2 @_seq_w1[k] = @_seq[i4] k += 1 i4 -= 1 end nn = k2 while nn != n3 @_seq_w1[k] = @_seq[nn] k += 1 nn += 1 if nn > @_n_city-1 nn = 0 end end # 評価(その1) r = kyori(@_n_city, @_seq_w1, @_rg) if r < max max = r sw = 1 for i3 in 0 ... @_n_city @_seq_w2[i3] = @_seq_w1[i3] end if @_sel > 0 ch = 1 end end # 入れ替え(その2) @_seq_w1[0] = @_seq[n3] k = 1 i4 = k1 while i4 > i2 @_seq_w1[k] = @_seq[i4] k += 1 i4 -= 1 end for i4 in n3+1 ... i2+1 @_seq_w1[k] = @_seq[i4] k += 1 end nn = k2 while nn != n3 @_seq_w1[k] = @_seq[nn] k += 1 nn += 1 if nn > @_n_city-1 nn = 0 end end # 評価(その2) r = kyori(@_n_city, @_seq_w1, @_rg) if r < max max = r sw = 1 for i3 in 0 ...@_n_city @_seq_w2[i3] = @_seq_w1[i3] end if @_sel > 0 ch = 1 end end # 入れ替え(その3) @_seq_w1[0] = @_seq[n3] k = 1 for i4 in i2+1 ...k1+1 @_seq_w1[k] = @_seq[i4] k += 1 end i4 = i2 while i4 > n3 @_seq_w1[k] = @_seq[i4] k += 1 i4 -= 1 end nn = k2 while nn != n3 @_seq_w1[k] = @_seq[nn] k += 1 nn += 1 if nn > @_n_city-1 nn = 0 end end # 評価(その3) r = kyori(@_n_city, @_seq_w1, @_rg) if r < max max = r sw = 1 for i3 in 0 ... @_n_city @_seq_w2[i3] = @_seq_w1[i3] end if @_sel > 0 ch = 1 end end # 入れ替え(その4) @_seq_w1[0] = @_seq[n3] k = 1 for i4 in i2+1 ... k1+1 @_seq_w1[k] = @_seq[i4] k += 1 end for i4 in n3+1 ... i2+1 @_seq_w1[k] = @_seq[i4] k += 1 end nn = k2 while nn != n3 @_seq_w1[k] = @_seq[nn] k += 1 nn += 1 if nn > @_n_city-1 nn = 0 end end # 評価(その4) r = kyori(@_n_city, @_seq_w1, @_rg) if r < max max = r sw = 1 for i3 in 0 ... @_n_city @_seq_w2[i3] = @_seq_w1[i3] end if @_sel > 0 ch = 1 end end i3 += 1 end i2 += 1 end n3 += 1 if n3 > @_n_city-3 n3 = 0 end i1 += 1 end end end # 設定 if sw > 0 r_m[0] = max for i1 in 0 ... @_n_city @_seq[i1] = @_seq_w2[i1] end end return sw end attr("_seq", true) end ######################### # クラスPartitionの定義 ######################### class Partition ########################## # コンストラクタ # name ファイル名 ########################## def initialize(name) max = 0 # ファイルのオープン @_i_file = name # 入力ファイル名 inn = open(name, "r") # 基本データ s = inn.gets().split(" ") @_n_city = Integer(s[1]) # 都市の数 @_sel = Integer(s[3]) # エッジの選択方法 # =0 最良のものを選択 # =1 最初のものを選択 @_neib = Integer(s[5]) # 近傍(2 or 3) @_seisu = Integer(s[7]) # 位置データの表現方法 # =1 整数 # =-1 実数(距離を整数計算) # =-2 実数(距離を実数計算) s = inn.gets().split(" ") @_out_m = Integer(s[1]) # 出力方法 # =-1 ディスプレイ(経路長だけ) # =0 ディスプレイ # =1 ファイル # =2 ファイル(経路長だけ) @_o_file = "" if @_out_m > 0 @_o_file = s[3] end s = inn.gets().split(" ") @_n_p_x = Integer(s[2]) # x軸方向の分割数 @_n_p_y = Integer(s[4]) # y軸方向の分割数 @_max_try = Integer(s[6]) # 最大試行回数 @_fix = 1 # =1 近傍を固定 # =0 近傍を可変 if @_neib < 0 @_neib = -@_neib @_fix = 0 end # 都市の位置データ @_city = Array.new(@_n_city) for i1 in 0 ... @_n_city @_city[i1] = Array.new(2) s = inn.gets().split(" ") @_city[i1][0] = Float(s[0]) @_city[i1][1] = Float(s[1]) end # ファイルのクローズ inn.close() # 距離テーブルの作成 @_rg = Array.new(@_n_city) # 都市間の距離 for i1 in 0 ... @_n_city @_rg[i1] = Array.new(@_n_city) for i2 in i1+1 ... @_n_city x = @_city[i2][0] - @_city[i1][0] y = @_city[i2][1] - @_city[i1][1] @_rg[i1][i2] = Math.sqrt(x * x + y * y) if @_seisu > -2 @_rg[i1][i2] = rg[i1][i2].round() end end end for i1 in 0 ... @_n_city for i2 in 0 ... i1 @_rg[i1][i2] = @_rg[i2][i1] end end # 作業領域 @_state = Array.new(@_n_p_y) # 領域結合用ワーク @_n_seq = Array.new(@_n_p_y) # 各領域の都市数 @_n_seq1 = Array.new(@_n_p_y) # 各領域の都市数(ワーク) for i1 in 0 ... @_n_p_y @_state[i1] = Array.new(@_n_p_x) # 領域結合用ワーク @_n_seq[i1] = Array.new(@_n_p_x) # 各領域の都市数 @_n_seq1[i1] = Array.new(@_n_p_x) # 各領域の都市数(ワーク) end @_seq_w1 = Array.new(@_n_city) # 作業領域 for i1 in 0 ... @_n_city @_seq_w1[i1] = 0 end @_seq_w2 = Array.new(@_n_city) # 作業領域 @_p_x = Array.new(@_n_p_x) # x軸の分割点 @_p_y = Array.new(@_n_p_y) # y軸の分割点 # 都市の分割 min_x = @_city[0][0] max_x = @_city[0][0] min_y = @_city[0][1] max_y = @_city[0][1] for i1 in 1 ... @_n_city if @_city[i1][0] < min_x min_x = @_city[i1][0] else if @_city[i1][0] > max_x max_x = @_city[i1][0] end end if @_city[i1][1] < min_y min_y = @_city[i1][1] else if @_city[i1][1] > max_y max_y = @_city[i1][1] end end end s_x = (max_x - min_x) / @_n_p_x @_p_x[0] = min_x + s_x @_p_x[@_n_p_x-1] = max_x for i1 in 1 ... @_n_p_x-1 @_p_x[i1] = @_p_x[0] + i1 * s_x end s_y = (max_y - min_y) / @_n_p_y @_p_y[0] = min_y + s_y @_p_y[@_n_p_y-1] = max_y for i1 in 1 ... @_n_p_y-1 @_p_y[i1] = @_p_y[0] + i1 * s_y end @_seq = Array.new(@_n_p_y) # 経路 @_seq1 = Array.new(@_n_p_y) # 経路(ワーク) for i1 in 0 ... @_n_p_y @_seq[i1] = Array.new(@_n_p_x) @_seq1[i1] = Array.new(@_n_p_x) for i2 in 0 ... @_n_p_x @_seq[i1][i2] = Array.new(@_n_city) @_seq1[i1][i2] = Array.new(@_n_city) n = 0 for i3 in 0 ... @_n_city if @_seq_w1[i3] == 0 if @_city[i3][0] <= @_p_x[i2] && @_city[i3][1] <= @_p_y[i1] @_seq_w1[i3] = 1 @_seq_w2[n] = i3 n += 1 end end end @_n_seq1[i1][i2] = n if n > 0 for i3 in 0 ... n @_seq1[i1][i2][i3] = @_seq_w2[i3] end if n > max max = n end end end end # 作業領域 print("最大都市数 " + String(max) + "\n") @_city_i = Array.new(max) # 都市の位置データ(作業領域) for i1 in 0 ... max @_city_i[i1] = Array.new(2) end @_max = 0 # 最適経路の長さ end ################## # 最適化の実行 ################## def Optimize() r = 0 # 分割数と開始時間の出力 if @_out_m > 0 Output(0, r) end for i1 in 0 ... @_n_p_y for i2 in 0 ... @_n_p_x @_n_seq[i1][i2] = @_n_seq1[i1][i2] for i3 in 0 ... @_n_seq1[i1][i2] @_seq[i1][i2][i3] = @_seq1[i1][i2][i3] end end end # 分割毎の最適化 for i1 in 0 ... @_n_p_y for i2 in 0 ... @_n_p_x if @_n_seq[i1][i2] > 3 # 近傍の大きさ if @_n_seq[i1][i2] > 3 nb = @_neib else nb = 2 end # 都市位置データの設定 for i3 in 0 ... @_n_seq[i1][i2] k = @_seq[i1][i2][i3] @_city_i[i3][0] = @_city[k][0] @_city_i[i3][1] = @_city[k][1] end # 最適化 it = Iteration.new(@_n_seq[i1][i2], @_max_try, @_seisu, @_sel, nb, @_fix, 0, -1, 0, @_o_file, @_city_i) max = it.Optimize() # 結果の保存 for i3 in 0 ... @_n_seq[i1][i2] k = it._seq[i3] @_seq_w1[i3] = @_seq[i1][i2][k] end for i3 in 0 ... @_n_seq[i1][i2] @_seq[i1][i2][i3] = @_seq_w1[i3] end # 出力 if @_seisu > -2 r = Integer(kyori(@_n_seq[i1][i2], @_seq[i1][i2], @_rg)) else r = kyori(@_n_seq[i1][i2], @_seq[i1][i2], @_rg).round() print(" y " + String(i1+1) + " x " + String(i2+1) + " n_city " + String(@_n_seq[i1][i2]) + " range " + String(r) + " (trial " + String(max) + ")\n") end end end end # 経路の接続 r = Connect() # 出力 Output(@_n_city, r) end ######################## # 出力 # n_c 都市の数 # r 距離 ######################## def Output(n_c, r) k = 0 if @_out_m <= 0 print("距離 " + String(r) + "\n") out = $stdout $stdin.gets() else now = String(Time.now) out = open(@_o_file, "a") if n_c > 0 print("距離 " + String(r) + "\n") printf(out, " 距離 " + String(r) + " 時間 " + now + "\n") else printf("問題 " + @_i_file + " 分割 " + String(@_n_p_x) + " " + String(@_n_p_y) + " 時間 " + now + "\n") end end if n_c > 0 && (@_out_m == 0 || @_out_m == 1) for i1 in 0 ... n_c n = @_seq_w1[i1] if @_seisu > 0 out.print(" " + String(n) + " " + String(int(@_city[n][0])) + " " + String(int(@_city[n][1])) + "\n") else out.print(" " + String(n) + " " + String(@_city[n][0]) + " " + String(@_city[n][1]) + "\n") end if @_out_m == 0 k += 1 if k == 10 $stdin.gets() k = 0 end end end end if @_out_m > 0 out.close() end end ######################## # 分割された領域の接続 ######################## def Connect() min = 0 k1 = 0 k2 = 0 k3 = 0 k4 = 0 min_c = 0 r1 = 0 r2 = 0 r3 = 0 r4 = 0 s1 = 0 s2 = 0 sw = 1 # 領域が1つの場合 if @_n_p_x == 1 && @_n_p_y == 1 for i1 in 0 ... @_n_seq[0][0] @_seq_w1[i1] = @_seq[0][0][i1] end # 初期設定 else for i1 in 0 ... @_n_p_y for i2 in 0 ... @_n_p_x if @_n_seq[i1][i2] > 0 @_state[i1][i2] = 0 else @_state[i1][i2] = 1 end end end # 実行 while sw > 0 # 最小節点領域 min_c = @_n_city sw = 0 for i1 in 0 ... @_n_p_y for i2 in 0 ... @_n_p_x if @_state[i1][i2] == 0 && @_n_seq[i1][i2] < min_c sw = 1 r1 = i1 r2 = i2 min_c = @_n_seq[i1][i2] end end end # 結合する対象領域の決定 if sw > 0 sw = 0 for i1 in 0 ... @_n_p_y for i2 in 0 ... @_n_p_x if @_state[i1][i2] == 0 && (i1 != r1 || i2 != r2) # 節点の数>2 if @_n_seq[r1][r2] > 1 for i3 in 0 ... @_n_seq[r1][r2] k1 = @_seq[r1][r2][i3] if i3 == @_n_seq[r1][r2]-1 k2 = @_seq[r1][r2][0] else k2 = @_seq[r1][r2][i3+1] end wd1 = @_rg[k1][k2] for i4 in 0 ... @_n_seq[i1][i2] k3 = @_seq[i1][i2][i4] if i4 == @_n_seq[i1][i2]-1 k4 = @_seq[i1][i2][0] else k4 = @_seq[i1][i2][i4+1] end wd = wd1 + @_rg[k3][k4] wa1 = @_rg[k1][k3] + @_rg[k2][k4] wa2 = @_rg[k1][k4] + @_rg[k2][k3] if sw == 0 || wa1-wd < min min = wa1 - wd r3 = i1 r4 = i2 if i3 == @_n_seq[r1][r2]-1 s1 = 0 else s1 = i3 + 1 end if i4 == @_n_seq[i1][i2]-1 s2 = 0 else s2 = i4 + 1 end sw = -1 end if sw == 0 || wa2-wd < min min = wa2 - wd r3 = i1 r4 = i2 s1 = i3 if i4 == @_n_seq[i1][i2]-1 s2 = 0 else s2 = i4 + 1 end sw = 1 end end end # 節点の数=1 else k1 = @_seq[r1][r2][0] if @_n_seq[i1][i2] > 1 for i4 in 0 ... @_n_seq[i1][i2] k3 = @_seq[i1][i2][i4] if i4 == @_n_seq[i1][i2]-1 k4 = @_seq[i1][i2][0] else k4 = @_seq[i1][i2][i4+1] end wd = @_rg[k3][k4] wa1 = @_rg[k1][k3] + @_rg[k1][k4] if sw == 0 || wa1-wd < min min = wa1 - wd r3 = i1 r4 = i2 s1 = 0 if i4 == @_n_seq[i1][i2]-1 s2 = 0 else s2 = i4 + 1 end sw = 1 end end else k3 = @_seq[i1][i2][0] wa1 = @_rg[k1][k3] if sw == 0 || wa1 < min min = wa1 r3 = i1 r4 = i2 s1 = 0 s2 = 0 sw = 1 end end end end end end # 領域の結合 @_seq_w1[0] = @_seq[r1][r2][s1] k = 1 n = s2 for i1 in 0 ... @_n_seq[r3][r4] @_seq_w1[k] = @_seq[r3][r4][n] k += 1 n += 1 if n > @_n_seq[r3][r4]-1 n = 0 end end if sw > 0 n = s1 + 1 for i1 in 0 ... @_n_seq[r1][r2]-1 if n > @_n_seq[r1][r2]-1 n = 0 end @_seq_w1[k] = @_seq[r1][r2][n] k += 1 n += 1 end else n = s1 - 1 for i1 in 0 ... @_n_seq[r1][r2]-1 if n < 0 n = @_n_seq[r1][r2] - 1 end @_seq_w1[k] = @_seq[r1][r2][n] k += 1 n -= 1 end end # 状態の変更 @_n_seq[r1][r2] += @_n_seq[r3][r4] @_state[r3][r4] = 1 for i1 in 0 ... @_n_seq[r1][r2] @_seq[r1][r2][i1] = @_seq_w1[i1] end sw = 1 end end end if @_seisu > -2 r = Integer(kyori(@_n_city, @_seq_w1, @_rg)) else r = kyori(@_n_city, @_seq_w1, @_rg).round() end @_max = r return r end attr("_out_m", true) attr("_o_file", true) attr("_max", true) end # 入力ミス if ARGV[0] == nil print("***error ファイル名を入力して下さい\n") # 入力OK else # 問題数と入力データファイル名 line = gets() a = line.split(" ") nm = Integer(a[1]) aa = Array.new(nm) for i0 in 0 ... nm aa[i0] = gets() end for i0 in 0 ... nm # 各問題の実行 a = aa[i0].split(" ") i_file = a[1] n = Integer(a[3]) pt = Partition.new(i_file) mean = 0.0 max = -1 # 乱数の初期値を変える for i1 in 0 ... n print("\n+++++問題 " + i_file + " +++++\n") srand(1000 * i1 + 1234567); # 最適化 pt.Optimize() # 最適値とその平均の計算 mean += pt._max if max < 0 or pt._max < max max = pt._max end end # 結果 if pt._out_m <= 0 print(" -----最小 " + String(max) + " 平均 " + String(mean/n) + "-----\n") else out = open(pt._o_file, "a") out = open("out.txt", "a") printf(out, " -----最小 " + String(max) + " 平均 " + String(mean/n) + "-----\n") out.close() end end end =begin ------------------------ケーススタディデータ(data.txt)------ 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 ---------------------データファイル(data1.txt)------------ 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 ---------------------データファイル(data2.txt)------------ 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 =end
# -*- coding: UTF-8 -*- import numpy as np import sys from math import * from random import * from datetime import * ################################# # 距離の計算 # n_c : 都市の数 # p : 都市番号 # rg : 都市間の距離 # return : 距離 ################################# def kyori(n_c, p, rg) : r = 0.0 n1 = p[0] for i1 in range(1, n_c) : n2 = p[i1] r += rg[n1][n2] n1 = n2 n2 = p[0] r += rg[n1][n2] return r ######################### # クラスIterationの定義 ######################### class Iteration : ################################### # コンストラクタ # n_city_i : 都市の数 # max_try_i : 最大試行回数 # sei_i : 整数 or 実数 # sel_i : エッジの選択方法 # neib_i : 近傍 # fix_i : 近傍の扱い方 # out_lvl_i : 出力レベル # out_m_i : 出力方法 # out_d_i : 表示間隔 # o_file_i : 出力ファイル名 # city_i : 都市の位置データ ################################### def __init__(self, n_city_i, max_tri_i, sei_i, sel_i, neib_i, fix_i, out_lvl_i, out_m_i, out_d_i, o_file_i, city_i) : # 値の設定 self.n_city = n_city_i # 都市の数 self.max_try = max_tri_i # 最大試行回数 self.seisu = sei_i # 位置データの表現方法 # =1 : 整数 # =-1 : 実数(距離を整数計算) # =-2 : 実数(距離を実数計算) self.sel = sel_i # エッジの選択方法 # =0 : 最良のものを選択 # =1 : 最初のものを選択 self.neib = neib_i # 近傍(2 or 3) self.fix = fix_i # =1 : 近傍を固定 # =0 : 近傍を可変 self.out_lvl = out_lvl_i # 出力レベル # =0 : 最終出力だけ # n>0 : n世代毎に出力(負の時はファイル) self.out_m = out_m_i # 出力方法 # =-1 : 出力しない # =0 : すべてを出力 # =1 : 評価値だけを出力(最終結果だけはすべてを出力) self.out_d = out_d_i # 表示間隔 self.o_file = o_file_i # 出力ファイル名 self.city = city_i # 都市の位置データ # 距離テーブルの作成 self.rg = np.empty((self.n_city, self.n_city), np.float) for i1 in range(0, self.n_city-1) : for i2 in range(i1+1, self.n_city) : x = self.city[i2][0] - self.city[i1][0] y = self.city[i2][1] - self.city[i1][1] self.rg[i1][i2] = sqrt(x * x + y * y) if self.seisu > -2 : self.rg[i1][i2] = floor(self.rg[i1][i2] + 0.5) for i1 in range(1, self.n_city) : for i2 in range(0, i1) : self.rg[i1][i2] = self.rg[i2][i1] # 都市を訪れる順序(初期設定) self.seq = np.empty(self.n_city, np.int) self.seq_w1 = np.empty(self.n_city, np.int) self.seq_w2 = np.empty(self.n_city, np.int) self.seq_w3 = np.empty(self.n_city, np.int) self.seq_w4 = np.empty(self.n_city, np.int) self.seq_w5 = np.empty(self.n_city, np.int) for i1 in range(0, self.n_city) : sw = 0 while sw == 0 : ct = int(random() * self.n_city) if ct >= self.n_city : ct = self.n_city - 1 self.seq[i1] = ct sw = 1 for i2 in range(0, i1) : if ct == self.seq[i2] : sw = 0 break ################ # 最適化の実行 ################ def Optimize (self) : # 初期設定 n_tri = 0 max = np.empty(1, np.float) max[0] = kyori(self.n_city, self.seq, self.rg) if self.out_m >= 0 and abs(self.out_lvl) > 0 : if self.seisu > -2 : print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0]))) else : print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0])) self.Output(self.out_lvl, n_tri, max[0]) # 実行 sw = 1 for n_tri in range(1, self.max_try+1) : # 改善 sw = self.Change(max) # 出力 if self.out_d > 0 and n_tri%self.out_d == 0 : if self.seisu > -2 : print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0]))) else : print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0])) if self.out_m >= 0 and abs(self.out_lvl) > 0 : if n_tri%abs(self.out_lvl) == 0 : self.Output(self.out_lvl, n_tri, max[0]) if sw <= 0 : break # 最終出力 if self.out_m >= 0 : n_tri -= 1 if self.seisu > -2 : print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0]))) else : print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0])) self.Output(self.out_lvl, n_tri, max[0]) return n_tri ################################ # 出力 # sw : >=0 : 出力先未定 # <0 : ファイル # n_tri : 現在の試行回数 # r : 距離 ################################ def Output(self, sw, n_tri, r) : k = 0 if sw >= 0 : pr = int(input(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ")) else : pr = -1 if pr != 0 : if pr > 0 : out = sys.stdout input("") else : now = datetime.today().time().isoformat() out = open(self.o_file, "a") if self.seisu > -2 : out.write("***試行回数 " + str(n_tri) + " 距離 " + str(int(r)) + " 時間 " + now + "\n") else : out.write("***試行回数 " + str(n_tri) + " 距離 " + str(r) + " 時間 " + now + "\n") if self.out_m == 0 : for i1 in range(0, self.n_city) : n = self.seq[i1] if self.seisu > 0 : out.write(" " + str(n) + " " + str(int(self.city[n][0])) + " " + str(int(self.city[n][1])) + "\n") else : out.write(" " + str(n) + " " + str(self.city[n][0]) + " " + str(self.city[n][1]) + "\n") if pr > 0 : k += 1 if k == pr : input("") k = 0 if pr <= 0 : out.close() ####################################### # エッジの入れ替え # r_m : 距離 # return : =0 : 改善がなかった # =1 : 改善があった ####################################### def Change(self, r_m) : max = r_m[0] max1 = 0.0 ch = 0 k1 = 0 k2 = 0 n1 = 0 n2 = 0 sw = 0 sw1 = 0 # 近傍を可変 if self.fix == 0 : # 初期設定(k=2) k = 2 for i1 in range(0, self.n_city) : self.seq_w4[i1] = self.seq[i1] self.seq_w3[i1] = 0 # 評価 sw2 = 0 i0 = 0 while i0 < self.n_city-2 and sw2 < 2 : if i0 == 0 : n = self.n_city - 1 else : n = self.n_city i1 = i0 + 2 while i1 < n and sw2 < 2 : # 相手の場所 k3 = i1 k4 = k3 + 1 if k4 > self.n_city-1 : k4 = 0 # 順番の入れ替え n3 = -1 for i2 in range(0, self.n_city) : if self.seq_w4[i2] == self.seq[i0+1] : n3 = i2 + 1 break nn = n3 n4 = -1 for i2 in range(0, self.n_city) : if nn > self.n_city-1 : nn = 0 if self.seq_w4[nn] == self.seq[k3] or self.seq_w4[nn] == self.seq[k4] : n4 = self.seq_w4[nn] break else : nn += 1 if n4 == self.seq[k4] : n4 = k3 k3 = k4 k4 = n4 # 評価 self.seq_w1[0] = self.seq[k4] self.seq_w1[1] = self.seq[i0+1] n4 = -1 nn = 2 while n4 < 0 : if n3 > self.n_city-1 : n3 = 0 self.seq_w1[nn] = self.seq_w4[n3] if self.seq_w4[n3] == self.seq[k3] : n4 = 1 nn += 1 n3 += 1 self.seq_w1[nn] = self.seq[i0] nn += 1 n3 = -1 n4 = -1 for i2 in range(0, self.n_city) : if self.seq_w4[i2] == self.seq[i0] : n3 = i2 - 1 if n3 < 0 : n3 = self.n_city - 1 break while n4 < 0 : if self.seq_w4[n3] == self.seq[k4] : n4 = 1 else : self.seq_w1[nn] = self.seq_w4[n3] nn += 1 n3 -= 1 if n3 < 0 : n3 = self.n_city - 1 r = kyori(self.n_city, self.seq_w1, self.rg) # 最適値の保存 if sw2 == 0 or r < max1 : sw2 = 1 max1 = r n1 = k3 n2 = k4 k1 = i0 k2 = i0 + 1 for i2 in range(0, self.n_city) : self.seq_w5[i2] = self.seq_w1[i2] if self.sel > 0 and max1 < max : sw2 = 2 i1 += 1 i0 += 1 # 最適値の保存と近傍の増加 if sw2 > 0 : if max1 < max : sw = 1 max = max1 for i1 in range(0, self.n_city) : self.seq_w2[i1] = self.seq_w5[i1] if k < self.neib : for i1 in range(0, self.n_city) : self.seq_w4[i1] = self.seq_w5[i1] self.seq_w3[k1] = 1 self.seq_w3[k2] = 1 self.seq_w3[n1] = 1 self.seq_w3[n2] = 1 k1 = n2 k += 1 else : sw1 = 1 else : sw1 = 1 # 実行(k>2) while sw1 == 0 : # 評価 sw2 = 0 for i1 in range(0, self.n_city) : # 相手の場所 k3 = i1 k4 = k3 + 1 if k4 > self.n_city-1 : k4 = 0 if self.seq_w3[k3] == 0 and self.seq_w3[k4] == 0 : # 順番の入れ替え n3 = -1 for i2 in range(0, self.n_city) : if self.seq_w4[i2] == self.seq[k2] : n3 = i2 + 1 break nn = n3 n4 = -1 for i2 in range(0, self.n_city) : if nn > self.n_city-1 : nn = 0 if self.seq_w4[nn] == self.seq[k3] or self.seq_w4[nn] == self.seq[k4] : n4 = self.seq_w4[nn] break else : nn += 1 if n4 == self.seq[k4] : n4 = k3 k3 = k4 k4 = n4 # 評価 self.seq_w1[0] = self.seq[k4] self.seq_w1[1] = self.seq[k2] n4 = -1 nn = 2 while n4 < 0 : if n3 > self.n_city-1 : n3 = 0 self.seq_w1[nn] = self.seq_w4[n3] if self.seq_w4[n3] == self.seq[k3] : n4 = 1 nn += 1 n3 += 1 self.seq_w1[nn] = self.seq[k1] nn += 1 n3 = -1 n4 = -1 for i2 in range(0, self.n_city) : if self.seq_w4[i2] == self.seq[k1] : n3 = i2 - 1 if n3 < 0 : n3 = self.n_city - 1 break while n4 < 0 : if self.seq_w4[n3] == self.seq[k4] : n4 = 1 else : self.seq_w1[nn] = self.seq_w4[n3] nn += 1 n3 -= 1 if n3 < 0 : n3 = self.n_city - 1 r = kyori(self.n_city, self.seq_w1, self.rg) # 最適値の保存 if sw2 == 0 or r < max1 : sw2 = 1 max1 = r n1 = k3 n2 = k4 for i2 in range(0, self.n_city) : self.seq_w5[i2] = self.seq_w1[i2] # 最適値の保存と近傍の増加 if sw2 > 0 : if max1 < max : sw = 1 max = max1 for i1 in range(0, self.n_city) : self.seq_w2[i1] = self.seq_w5[i1] if k < self.neib : for i1 in range(0, self.n_city) : self.seq_w4[i1] = self.seq_w5[i1] self.seq_w3[n1] = 1 self.seq_w3[n2] = 1 k1 = n2 k += 1 else : sw1 = 1 else : sw1 = 1 # 近傍を固定 else : n3 = int(random() * (self.n_city - 2)) if n3 > self.n_city-3 : n3 = self.n_city - 3 # 2近傍 i1 = 0 while i1 <= self.n_city-3 and ch == 0 : if n3 == 0 : n1 = self.n_city - 2 else : n1 = self.n_city - 1 i2 = n3 + 2 while i2 <= n1 and ch == 0 : # 枝の場所((n3,n3+1), (k1,k2)) k1 = i2 if i2 == self.n_city-1 : k2 = 0 else : k2 = i2 + 1 # 枝の入れ替え self.seq_w1[0] = self.seq[n3] k = 1 for i3 in range(k1, n3, -1) : self.seq_w1[k] = self.seq[i3] k += 1 nn = k2 while nn != n3 : self.seq_w1[k] = self.seq[nn] k += 1 nn += 1 if nn > self.n_city-1 : nn = 0 # 評価 r = kyori(self.n_city, self.seq_w1, self.rg) if r < max : max = r sw = 1 for i3 in range(0, self.n_city) : self.seq_w2[i3] = self.seq_w1[i3] if self.sel > 0 : ch = 1 i2 += 1 n3 += 1 if n3 > self.n_city-3 : n3 = 0 i1 += 1 # 3近傍 if self.neib == 3 and ch == 0 : i1 = 0 while i1 <= self.n_city-3 and ch == 0 : n1 = self.n_city - 2 n2 = self.n_city - 1 i2 = n3 + 1 while i2 <= n1 and ch == 0 : i3 = i2 + 1 while i3 <= n2 and ch == 0 : # 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3 if i3 == self.n_city-1 : k2 = 0 else : k2 = i3 + 1 # 枝の入れ替えと評価 # 入れ替え(その1) self.seq_w1[0] = self.seq[n3] k = 1 for i4 in range(i2, n3, -1) : self.seq_w1[k] = self.seq[i4] k += 1 for i4 in range(k1, i2, -1) : self.seq_w1[k] = self.seq[i4] k += 1 nn = k2 while nn != n3 : self.seq_w1[k] = self.seq[nn] k += 1 nn += 1 if nn > self.n_city-1 : nn = 0 # 評価(その1) r = kyori(self.n_city, self.seq_w1, self.rg) if r < max : max = r sw = 1 for i3 in range(0, self.n_city) : self.seq_w2[i3] = self.seq_w1[i3] if self.sel > 0 : ch = 1 # 入れ替え(その2) self.seq_w1[0] = self.seq[n3] k = 1 for i4 in range(k1, i2, -1) : self.seq_w1[k] = self.seq[i4] k += 1 for i4 in range(n3+1, i2+1) : self.seq_w1[k] = self.seq[i4] k += 1 nn = k2 while nn != n3 : self.seq_w1[k] = self.seq[nn] k += 1 nn += 1 if nn > self.n_city-1 : nn = 0 # 評価(その2) r = kyori(self.n_city, self.seq_w1, self.rg) if r < max : max = r sw = 1 for i3 in range(0, self.n_city) : self.seq_w2[i3] = self.seq_w1[i3] if self.sel > 0 : ch = 1 # 入れ替え(その3) self.seq_w1[0] = self.seq[n3] k = 1 for i4 in range(i2+1, k1+1) : self.seq_w1[k] = self.seq[i4] k += 1 for i4 in range(i2, n3, -1) : self.seq_w1[k] = self.seq[i4] k += 1 nn = k2 while nn != n3 : self.seq_w1[k] = self.seq[nn] k += 1 nn += 1 if nn > self.n_city-1 : nn = 0 # 評価(その3) r = kyori(self.n_city, self.seq_w1, self.rg) if r < max : max = r sw = 1 for i3 in range(0, self.n_city) : self.seq_w2[i3] = self.seq_w1[i3] if self.sel > 0 : ch = 1 # 入れ替え(その4) self.seq_w1[0] = self.seq[n3] k = 1 for i4 in range(i2+1, k1+1) : self.seq_w1[k] = self.seq[i4] k += 1 for i4 in range(n3+1, i2+1) : self.seq_w1[k] = self.seq[i4] k += 1 nn = k2 while nn != n3 : self.seq_w1[k] = self.seq[nn] k += 1 nn += 1 if nn > self.n_city-1 : nn = 0 # 評価(その4) r = kyori(self.n_city, self.seq_w1, self.rg) if r < max : max = r sw = 1 for i3 in range(0, self.n_city) : self.seq_w2[i3] = self.seq_w1[i3] if self.sel > 0 : ch = 1 i3 += 1 i2 += 1 n3 += 1 if n3 > self.n_city-3 : n3 = 0 i1 += 1 # 設定 if sw > 0 : r_m[0] = max for i1 in range(0, self.n_city) : self.seq[i1] = self.seq_w2[i1] return sw ######################### # クラスPartitionの定義 ######################### class Partition : ########################## # コンストラクタ # name : ファイル名 ########################## def __init__(self, name) : max = 0 # ファイルのオープン self.i_file = name # 入力ファイル名 inn = open(name, "r") # 基本データ s = inn.readline().split() self.n_city = int(s[1]) # 都市の数 self.sel = int(s[3]) # エッジの選択方法 # =0 : 最良のものを選択 # =1 : 最初のものを選択 self.neib = int(s[5]) # 近傍(2 or 3) self.seisu = int(s[7]) # 位置データの表現方法 # =1 : 整数 # =-1 : 実数(距離を整数計算) # =-2 : 実数(距離を実数計算) s = inn.readline().split() self.out_m = int(s[1]) # 出力方法 # =-1 : ディスプレイ(経路長だけ) # =0 : ディスプレイ # =1 : ファイル # =2 : ファイル(経路長だけ) self.o_file = "" if self.out_m > 0 : self.o_file = s[3] s = inn.readline().split() self.n_p_x = int(s[2]) # x軸方向の分割数 self.n_p_y = int(s[4]) # y軸方向の分割数 self.max_try = int(s[6]) # 最大試行回数 self.fix = 1 # =1 : 近傍を固定 # =0 : 近傍を可変 if self.neib < 0 : self.neib = -self.neib self.fix = 0 # 都市の位置データ self.city = np.empty((self.n_city, 2), np.float) for i1 in range(0, self.n_city) : s = inn.readline().split() self.city[i1][0] = float(s[0]) self.city[i1][1] = float(s[1]) # ファイルのクローズ inn.close() # 距離テーブルの作成 self.rg = np.empty((self.n_city, self.n_city), np.float) # 都市間の距離 for i1 in range(0, self.n_city) : for i2 in range(i1+1, self.n_city) : x = self.city[i2][0] - self.city[i1][0] y = self.city[i2][1] - self.city[i1][1] self.rg[i1][i2] = sqrt(x * x + y * y) if self.seisu > -2 : self.rg[i1][i2] = floor(rg[i1][i2] + 0.5) for i1 in range(0, self.n_city) : for i2 in range(0, i1) : self.rg[i1][i2] = self.rg[i2][i1] # 作業領域 self.state = np.empty((self.n_p_y, self.n_p_x), np.int) # 領域結合用ワーク self.n_seq = np.empty((self.n_p_y, self.n_p_x), np.int) # 各領域の都市数 self.n_seq1 = np.empty((self.n_p_y, self.n_p_x), np.int) # 各領域の都市数(ワーク) self.seq_w1 = np.zeros(self.n_city, np.int) # 作業領域 self.seq_w2 = np.empty(self.n_city, np.int) # 作業領域 self.p_x = np.empty(self.n_p_x, np.float) # x軸の分割点 self.p_y = np.empty(self.n_p_y, np.float) # y軸の分割点 # 都市の分割 min_x = self.city[0][0] max_x = self.city[0][0] min_y = self.city[0][1] max_y = self.city[0][1] for i1 in range(1, self.n_city) : if self.city[i1][0] < min_x : min_x = self.city[i1][0] else : if self.city[i1][0] > max_x : max_x = self.city[i1][0] if self.city[i1][1] < min_y : min_y = self.city[i1][1] else : if self.city[i1][1] > max_y : max_y = self.city[i1][1] s_x = (max_x - min_x) / self.n_p_x self.p_x[0] = min_x + s_x self.p_x[self.n_p_x-1] = max_x for i1 in range(1, self.n_p_x-1) : self.p_x[i1] = self.p_x[0] + i1 * s_x s_y = (max_y - min_y) / self.n_p_y self.p_y[0] = min_y + s_y self.p_y[self.n_p_y-1] = max_y for i1 in range(1, self.n_p_y-1) : self.p_y[i1] = self.p_y[0] + i1 * s_y self.seq = np.empty((self.n_p_y, self.n_p_x, self.n_city), np.int) # 経路 self.seq1 = np.empty((self.n_p_y, self.n_p_x, self.n_city), np.int) # 経路(ワーク) for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : n = 0 for i3 in range(0, self.n_city) : if self.seq_w1[i3] == 0 : if self.city[i3][0] <= self.p_x[i2] and self.city[i3][1] <= self.p_y[i1] : self.seq_w1[i3] = 1 self.seq_w2[n] = i3 n += 1 self.n_seq1[i1][i2] = n if n > 0 : for i3 in range(0, n) : self.seq1[i1][i2][i3] = self.seq_w2[i3] if n > max : max = n # 作業領域 print("最大都市数 " + str(max)) self.city_i = np.empty((max, 2), np.float) # 都市の位置データ(作業領域) self.Max = 0 # 最適経路の長さ ################## # 最適化の実行 ################## def Optimize(self) : r = 0 # 分割数と開始時間の出力 if self.out_m > 0 : self.Output(0, r) for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : self.n_seq[i1][i2] = self.n_seq1[i1][i2] for i3 in range(0, self.n_seq1[i1][i2]) : self.seq[i1][i2][i3] = self.seq1[i1][i2][i3] # 分割毎の最適化 for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : if self.n_seq[i1][i2] > 3 : # 近傍の大きさ if self.n_seq[i1][i2] > 3 : nb = self.neib else : nb = 2 # 都市位置データの設定 for i3 in range(0, self.n_seq[i1][i2]) : k = self.seq[i1][i2][i3] self.city_i[i3][0] = self.city[k][0] self.city_i[i3][1] = self.city[k][1] # 最適化 it = Iteration(self.n_seq[i1][i2], self.max_try, self.seisu, self.sel, nb, self.fix, 0, -1, 0, self.o_file, self.city_i) max = it.Optimize() # 結果の保存 for i3 in range(0, self.n_seq[i1][i2]) : k = it.seq[i3] self.seq_w1[i3] = self.seq[i1][i2][k] for i3 in range(0, self.n_seq[i1][i2]) : self.seq[i1][i2][i3] = self.seq_w1[i3] # 出力 if self.seisu > -2 : r = int(kyori(self.n_seq[i1][i2], self.seq[i1][i2], self.rg)) else : r = floor(kyori(self.n_seq[i1][i2], self.seq[i1][i2], self.rg) + 0.5) print(" y " + str(i1+1) + " x " + str(i2+1) + " n_city " + str(self.n_seq[i1][i2]) + " range " + str(r) + " (trial " + str(max) + ")") # 経路の接続 r = self.Connect() # 出力 self.Output(self.n_city, r) ######################## # 出力 # n_c : 都市の数 # r : 距離 ######################## def Output(self, n_c, r) : k = 0 if self.out_m <= 0 : out = sys.stdout print("距離 " + str(r)) input("") else : now = datetime.today().time().isoformat() out = open(self.o_file, "a") if n_c > 0 : print("距離 " + str(r)) out.write(" 距離 " + str(r) + " 時間 " + now + "\n") else : out.write("問題 " + self.i_file + " 分割 " + str(self.n_p_x) + " " + str(self.n_p_y) + " 時間 " + now + "\n") if n_c > 0 and (self.out_m == 0 or self.out_m == 1) : for i1 in range(0, n_c) : n = self.seq_w1[i1] if self.seisu > 0 : out.write(" " + str(n) + " " + str(int(self.city[n][0])) + " " + str(int(self.city[n][1])) + "\n") else : out.write(" " + str(n) + " " + str(self.city[n][0]) + " " + str(self.city[n][1]) + "\n") if self.out_m == 0 : k += 1 if k == 10 : input("") k = 0 if self.out_m > 0 : out.close() ######################## # 分割された領域の接続 ######################## def Connect(self) : min = 0 k1 = 0 k2 = 0 k3 = 0 k4 = 0 min_c = 0 r1 = 0 r2 = 0 r3 = 0 r4 = 0 s1 = 0 s2 = 0 sw = 1 # 領域が1つの場合 if self.n_p_x == 1 and self.n_p_y == 1 : for i1 in range(0, self.n_seq[0][0]) : self.seq_w1[i1] = self.seq[0][0][i1] # 初期設定 else : for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : if self.n_seq[i1][i2] > 0 : self.state[i1][i2] = 0 else : self.state[i1][i2] = 1 # 実行 while sw > 0 : # 最小節点領域 min_c = self.n_city sw = 0 for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : if self.state[i1][i2] == 0 and self.n_seq[i1][i2] < min_c : sw = 1 r1 = i1 r2 = i2 min_c = self.n_seq[i1][i2] # 結合する対象領域の決定 if sw > 0 : sw = 0 for i1 in range(0, self.n_p_y) : for i2 in range(0, self.n_p_x) : if self.state[i1][i2] == 0 and (i1 != r1 or i2 != r2) : # 節点の数>2 if self.n_seq[r1][r2] > 1 : for i3 in range(0, self.n_seq[r1][r2]) : k1 = self.seq[r1][r2][i3] if i3 == self.n_seq[r1][r2]-1 : k2 = self.seq[r1][r2][0] else : k2 = self.seq[r1][r2][i3+1] wd1 = self.rg[k1][k2] for i4 in range(0, self.n_seq[i1][i2]) : k3 = self.seq[i1][i2][i4] if i4 == self.n_seq[i1][i2]-1 : k4 = self.seq[i1][i2][0] else : k4 = self.seq[i1][i2][i4+1] wd = wd1 + self.rg[k3][k4] wa1 = self.rg[k1][k3] + self.rg[k2][k4] wa2 = self.rg[k1][k4] + self.rg[k2][k3] if sw == 0 or wa1-wd < min : min = wa1 - wd r3 = i1 r4 = i2 if i3 == self.n_seq[r1][r2]-1 : s1 = 0 else : s1 = i3 + 1 if i4 == self.n_seq[i1][i2]-1 : s2 = 0 else : s2 = i4 + 1 sw = -1 if sw == 0 or wa2-wd < min : min = wa2 - wd r3 = i1 r4 = i2 s1 = i3 if i4 == self.n_seq[i1][i2]-1 : s2 = 0 else : s2 = i4 + 1 sw = 1 # 節点の数=1 else : k1 = self.seq[r1][r2][0] if self.n_seq[i1][i2] > 1 : for i4 in range(0, self.n_seq[i1][i2]) : k3 = self.seq[i1][i2][i4] if i4 == self.n_seq[i1][i2]-1 : k4 = self.seq[i1][i2][0] else : k4 = self.seq[i1][i2][i4+1] wd = self.rg[k3][k4] wa1 = self.rg[k1][k3] + self.rg[k1][k4] if sw == 0 or wa1-wd < min : min = wa1 - wd r3 = i1 r4 = i2 s1 = 0 if i4 == self.n_seq[i1][i2]-1 : s2 = 0 else : s2 = i4 + 1 sw = 1 else : k3 = self.seq[i1][i2][0] wa1 = self.rg[k1][k3] if sw == 0 or wa1 < min : min = wa1 r3 = i1 r4 = i2 s1 = 0 s2 = 0 sw = 1 # 領域の結合 self.seq_w1[0] = self.seq[r1][r2][s1] k = 1 n = s2 for i1 in range(0, self.n_seq[r3][r4]) : self.seq_w1[k] = self.seq[r3][r4][n] k += 1 n += 1 if n > self.n_seq[r3][r4]-1 : n = 0 if sw > 0 : n = s1 + 1 for i1 in range(0, self.n_seq[r1][r2]-1) : if n > self.n_seq[r1][r2]-1 : n = 0 self.seq_w1[k] = self.seq[r1][r2][n] k += 1 n += 1 else : n = s1 - 1 for i1 in range(0, self.n_seq[r1][r2]-1) : if n < 0 : n = self.n_seq[r1][r2] - 1 self.seq_w1[k] = self.seq[r1][r2][n] k += 1 n -= 1 # 状態の変更 self.n_seq[r1][r2] += self.n_seq[r3][r4] self.state[r3][r4] = 1 for i1 in range(0, self.n_seq[r1][r2]) : self.seq[r1][r2][i1] = self.seq_w1[i1] sw = 1 if self.seisu > -2 : r = int(kyori(self.n_city, self.seq_w1, self.rg)) else : r = floor(kyori(self.n_city, self.seq_w1, self.rg) + 0.5) self.Max = r return r ################################ # 巡回セールスマン問題(分割法) # coded by Y.Suganuma ################################ # 入力ミス if len(sys.argv) <= 1 : print("***error ファイル名を入力して下さい") # 入力OK else : # ファイルのオープン inn = open(sys.argv[1], "r") # 問題数と入力データファイル名 s = inn.readline().split() nm = int(s[1]) for i0 in range(0, nm) : # 各問題の実行 s = inn.readline().split() i_file = s[1] n = int(s[3]) pt = Partition(i_file) mean = 0.0 max = -1 # 乱数の初期値を変える for i1 in range(0, n) : print("\n+++++問題 " + i_file + " +++++") seed(1000 * i1 + 1234567); # 最適化 pt.Optimize() # 最適値とその平均の計算 mean += pt.Max if max < 0 or pt.Max < max : max = pt.Max # 結果 if pt.out_m <= 0 : print(" -----最小 " + str(max) + " 平均 " + str(mean/n) + "-----") else : out = open(pt.o_file, "a") out.write(" -----最小 " + str(max) + " 平均 " + str(mean/n) + "-----\n") out.close() inn.close() """ ------------------------ケーススタディデータ(data.txt)------ 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 ---------------------データファイル(data1.txt)------------ 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 ---------------------データファイル(data2.txt)------------ 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 """
/****************************/ /* 巡回セールスマン問題 */ /* (分割法) */ /* coded by Y.Suganuma */ /****************************/ using System; using System.IO; /*************************/ /* クラスPartitionの定義 */ /*************************/ class Partition { float [][] rg; // 都市間の距離 float [] p_x; // x軸の分割点 float [] p_y; // y軸の分割点 int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 int max_try; // 最大試行回数 int [] seq_w1; // 作業領域 int [] seq_w2; // 作業領域 int neib; // 近傍(2 or 3) public int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 Random rn; // 乱数 float [][] city; //都市の位置データ float [][] city_i; //都市の位置データ(作業領域) public int Max; // 最適経路の長さ int n_city; // 都市の数 int [][] n_seq; // 各領域の都市数 int [][] n_seq1; // 各領域の都市数(ワーク) int n_p_x; // x軸方向の分割数 int n_p_y; // y軸方向の分割数 public int out_m; // 出力方法 // =-1 : ディスプレイ(経路長だけ) // =0 : ディスプレイ // =1 : ファイル // =2 : ファイル(経路長だけ) int range; // 現在の評価値 int seed; // 乱数の初期値 int [][][] seq; // 経路 int [][][] seq1; // 経路(ワーク) int [][] state; // 領域結合用ワーク public String o_file; // 出力ファイル名 String i_file; // 入力ファイル名 /****************************/ /* コンストラクタ */ /* i_file : ファイル名 */ /****************************/ public Partition (String name) { i_file = name; string[] lines = File.ReadAllLines(i_file); // 基本データ // 1行目 string[] str = lines[0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); n_city = int.Parse(str[1]); sel = int.Parse(str[3]); neib = int.Parse(str[5]); seisu = int.Parse(str[7]); if (neib < 0) { neib = -neib; fix = 0; } else fix = 1; // 2行目 str = lines[1].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); out_m = int.Parse(str[1]); o_file = str[3]; // 3行目 str = lines[2].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); n_p_x = int.Parse(str[2]); n_p_y = int.Parse(str[4]); max_try = int.Parse(str[6]); // 都市の位置データ city = new float [n_city][]; for (int i1 = 0; i1 < n_city; i1++) { city[i1] = new float [2]; str = lines[i1+3].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); city[i1][0] = float.Parse(str[0]); city[i1][1] = float.Parse(str[1]); } // 距離テーブルの作成 rg = new float [n_city][]; for (int i1 = 0; i1 < n_city; i1++) { rg[i1] = new float [n_city]; for (int i2 = i1+1; i2 < n_city; i2++) { double x = city[i2][0] - city[i1][0]; double y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)Math.Sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (int i1 = 1; i1 < n_city; i1++) { for (int i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 作業領域 state = new int [n_p_y][]; n_seq = new int [n_p_y][]; n_seq1 = new int [n_p_y][]; for (int i1 = 0; i1 < n_p_y; i1++) { state[i1] = new int [n_p_x]; n_seq[i1] = new int [n_p_x]; n_seq1[i1] = new int [n_p_x]; } seq = new int [n_p_y][][]; seq1 = new int [n_p_y][][]; for (int i1 = 0; i1 < n_p_y; i1++) { seq[i1] = new int [n_p_x][]; seq1[i1] = new int [n_p_x][]; for (int i2 = 0; i2 < n_p_x; i2++) { seq[i1][i2] = new int [n_city]; seq1[i1][i2] = new int [n_city]; } } seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; p_x = new float [n_p_x]; p_y = new float [n_p_y]; // 都市の分割 for (int i1 = 0; i1 < n_city; i1++) seq_w1[i1] = 0; float min_x = city[0][0]; float max_x = city[0][0]; float min_y = city[0][1]; float max_y = city[0][1]; for (int i1 = 1; i1 < n_city; i1++) { if (city[i1][0] < min_x) min_x = city[i1][0]; else { if (city[i1][0] > max_x) max_x = city[i1][0]; } if (city[i1][1] < min_y) min_y = city[i1][1]; else { if (city[i1][1] > max_y) max_y = city[i1][1]; } } float s_x = (max_x - min_x) / n_p_x; p_x[0] = min_x + s_x; p_x[n_p_x-1] = max_x; for (int i1 = 1; i1 < n_p_x-1; i1++) p_x[i1] = p_x[0] + i1 * s_x; float s_y = (max_y - min_y) / n_p_y; p_y[0] = min_y + s_y; p_y[n_p_y-1] = max_y; for (int i1 = 1; i1 < n_p_y-1; i1++) p_y[i1] = p_y[0] + i1 * s_y; int max = 0; for (int i1 = 0; i1 < n_p_y; i1++) { for (int i2 = 0; i2 < n_p_x; i2++) { int n = 0; for (int i3 = 0; i3 < n_city; i3++) { if (seq_w1[i3] == 0) { if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) { seq_w1[i3] = 1; seq_w2[n] = i3; n++; } } } n_seq1[i1][i2] = n; if (n > 0) { for (int i3 = 0; i3 < n; i3++) seq1[i1][i2][i3] = seq_w2[i3]; if (n > max) max = n; } } } for (int i1 = 0; i1 < n_p_y; i1++) { for (int i2 = 0; i2 < n_p_x; i2++) state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1; } // 作業領域 Console.WriteLine("最大都市数 " + max); city_i = new float [max][]; for (int i1 = 0; i1 < max; i1++) city_i[i1] = new float [2]; } /******************************/ /* 最適化の実行 */ /* seed_i : 乱数の初期値 */ /******************************/ public void Optimize(int seed_i) { // 乱数の初期設定 seed = seed_i; rn = new Random (seed); // rn.NextDouble(); for (int i1 = 0; i1 < n_p_y; i1++) { for (int i2 = 0; i2 < n_p_x; i2++) { n_seq[i1][i2] = n_seq1[i1][i2]; state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1; for (int i3 = 0; i3 < n_seq1[i1][i2]; i3++) seq[i1][i2][i3] = seq1[i1][i2][i3]; } } // 分割数と開始時間の出力(ファイルへ出力する場合) if (out_m > 0) Output(0); // 分割毎の最適化 for (int i1 = 0; i1 < n_p_y; i1++) { for (int i2 = 0; i2 < n_p_x; i2++) { if (n_seq[i1][i2] > 3) { // 近傍の大きさ int nb = (n_seq[i1][i2] > 3) ? neib : 2; // 都市位置データの設定 for (int i3 = 0; i3 < n_seq[i1][i2]; i3++) { int k = seq[i1][i2][i3]; city_i[i3][0] = city[k][0]; city_i[i3][1] = city[k][1]; } // 最適化 Iteration it = new Iteration (n_seq[i1][i2], max_try, seisu, sel, nb, fix, 0, -1, 0, o_file, city_i, rn); int max = it.Optimize(); // 結果の保存 for (int i3 = 0; i3 < n_seq[i1][i2]; i3++) { int k = it.seq[i3]; seq_w1[i3] = seq[i1][i2][k]; } for (int i3 = 0; i3 < n_seq[i1][i2]; i3++) seq[i1][i2][i3] = seq_w1[i3]; // 出力(文字) int r = (seisu > -2) ? (int)Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) : (int)(Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5); Console.WriteLine(" y " + (i1+1) + " x " + (i2+1) + " n_city " + n_seq[i1][i2] + " range " + r + " (trial " + max + ")"); } } } // 経路の接続 range = Connect(); Max = range; // 出力(文字) Output(n_city); } /***********************/ /* 出力 */ /* n_c : 都市の数 */ /***********************/ void Output(int n_c) { StreamWriter OUT = new StreamWriter(o_file, true); if (out_m <= 0) { Console.WriteLine("距離 " + range); Console.ReadLine(); } else { DateTime now = DateTime.Now; // 現在時刻の獲得 if (n_c > 0) { Console.WriteLine("距離 " + range); OUT.WriteLine(" 距離 " + range + " 時間 " + now); } else OUT.WriteLine("問題 " + i_file + " 乱数 " + seed + " 分割 " + n_p_x + " " + n_p_y + " 時間 " + now); } int k = 0; if (n_c > 0 && (out_m == 0 || out_m == 1)) { for (int i1 = 0; i1 < n_c; i1++) { int n = seq_w1[i1]; if (out_m > 0) { if (seisu > 0) OUT.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else OUT.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]); } else { if (seisu > 0) Console.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else Console.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]); } if (out_m == 0) { k++; if (k == 10) { Console.ReadLine(); k = 0; } } } } OUT.Close(); } /************************/ /* 分割された領域の接続 */ /************************/ int Connect() { double wd, wd1, wa1, wa2, min = 0; int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r, r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1; /* 領域が1つの場合 */ if (n_p_x == 1 && n_p_y == 1) { for (i1 = 0; i1 < n_seq[0][0]; i1++) seq_w1[i1] = seq[0][0][i1]; } /* 領域が複数の場合 */ else { while (sw > 0) { // 最小節点領域 min_c = n_city; sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) { sw = 1; r1 = i1; r2 = i2; min_c = n_seq[i1][i2]; } } } // 結合する対象領域の決定 if (sw > 0) { sw = 0; for (i1 = 0; i1 < n_p_y; i1++) { for (i2 = 0; i2 < n_p_x; i2++) { if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) { // 節点の数>2 if (n_seq[r1][r2] > 1) { for (i3 = 0; i3 < n_seq[r1][r2]; i3++) { k1 = seq[r1][r2][i3]; k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] : seq[r1][r2][i3+1]; wd1 = rg[k1][k2]; for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = wd1 + rg[k3][k4]; wa1 = rg[k1][k3] + rg[k2][k4]; wa2 = rg[k1][k4] + rg[k2][k3]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = -1; } if (sw == 0 || wa2-wd < min) { min = wa2 - wd; r3 = i1; r4 = i2; s1 = i3; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } } // 節点の数=1 else { k1 = seq[r1][r2][0]; if (n_seq[i1][i2] > 1) { for (i4 = 0; i4 < n_seq[i1][i2]; i4++) { k3 = seq[i1][i2][i4]; k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] : seq[i1][i2][i4+1]; wd = rg[k3][k4]; wa1 = rg[k1][k3] + rg[k1][k4]; if (sw == 0 || wa1-wd < min) { min = wa1 - wd; r3 = i1; r4 = i2; s1 = 0; s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1; sw = 1; } } } else { k3 = seq[i1][i2][0]; wa1 = rg[k1][k3]; if (sw == 0 || wa1 < min) { min = wa1; r3 = i1; r4 = i2; s1 = 0; s2 = 0; sw = 1; } } } } } } // 領域の結合 seq_w1[0] = seq[r1][r2][s1]; k = 1; n = s2; for (i1 = 0; i1 < n_seq[r3][r4]; i1++) { seq_w1[k] = seq[r3][r4][n]; k++; n++; if (n > n_seq[r3][r4]-1) n = 0; } if (sw > 0) { n = s1 + 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n > n_seq[r1][r2]-1) n = 0; seq_w1[k] = seq[r1][r2][n]; k++; n++; } } else { n = s1 - 1; for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) { if (n < 0) n = n_seq[r1][r2] - 1; seq_w1[k] = seq[r1][r2][n]; k++; n--; } } // 状態の変更 n_seq[r1][r2] += n_seq[r3][r4]; state[r3][r4] = 1; for (i1 = 0; i1 < n_seq[r1][r2]; i1++) seq[r1][r2][i1] = seq_w1[i1]; sw = 1; } } } r = (seisu > -2) ? (int)Iteration.kyori(n_city, seq_w1, rg) : (int)(Iteration.kyori(n_city, seq_w1, rg) + 0.5); return r; } } /*************************/ /* クラスIterationの定義 */ /*************************/ class Iteration { float [][] rg; // 都市間の距離 int fix; // =1 : 近傍を固定 // =0 : 近傍を可変 int max_try; // 最大試行回数 int neib; // 近傍(2 or 3) int out_d; // 表示間隔 int [] seq_w1; // 都市を訪れる順序(ワーク) int [] seq_w2; // 都市を訪れる順序(ワーク) int [] seq_w3; // 都市を訪れる順序(ワーク) int [] seq_w4; // 都市を訪れる順序(ワーク) int [] seq_w5; // 都市を訪れる順序(ワーク) int out_lvl; // 出力レベル // =0 : 最終出力だけ // n>0 : n世代毎に出力(負の時はファイル) int out_m; // 出力方法 // =-1 : 出力しない // =0 : すべてを出力 // =1 : 評価値だけを出力(最終結果だけはすべてを出力) int seisu; // 位置データの表現方法 // =1 : 整数 // =-1 : 実数(距離を整数計算) // =-2 : 実数(距離を実数計算) int sel; // エッジの選択方法 // =0 : 最良のものを選択 // =1 : 最初のものを選択 String o_file; // 出力ファイル名 Random rn; // 乱数 double range; // 現在の評価値 float [][] city; //都市の位置データ int n_city; // 都市の数 int n_tri; // 試行回数 public int [] seq; // 都市を訪れる順序 /**********************************/ /* コンストラクタ */ /* n_city_i : 都市の数 */ /* max_try_i : 最大試行回数 */ /* sei_i : 整数 or 実数 */ /* sel_i : エッジの選択方法 */ /* neib_i : 近傍(2 or 3) */ /* fix_i : 近傍の扱い方 */ /* out_lvl_i : 出力レベル */ /* out_m_i : 出力方法 */ /* out_d_i : 表示間隔 */ /* o_file_i : 出力ファイル名 */ /* city_i : 都市の位置データ */ /* rn_i : 乱数 */ /**********************************/ public Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i, int fix_i, int out_lvl_i, int out_m_i, int out_d_i, String o_file_i, float [][] city_i, Random rn_i) { // 値の設定 n_city = n_city_i; max_try = max_tri_i; seisu = sei_i; sel = sel_i; neib = neib_i; fix = fix_i; out_lvl = out_lvl_i; out_m = out_m_i; out_d = out_d_i; o_file = o_file_i; rn = rn_i; n_tri = 0; // 都市の位置データ city = new float [n_city][]; for (int i1 = 0; i1 < n_city; i1++) { city[i1] = new float [2]; city[i1][0] = city_i[i1][0]; city[i1][1] = city_i[i1][1]; } // 距離テーブルの作成 rg = new float [n_city][]; for (int i1 = 0; i1 < n_city; i1++) { rg[i1] = new float [n_city]; for (int i2 = i1+1; i2 < n_city; i2++) { double x = city[i2][0] - city[i1][0]; double y = city[i2][1] - city[i1][1]; rg[i1][i2] = (float)Math.Sqrt(x * x + y * y); if (seisu > -2) rg[i1][i2] = (int)(rg[i1][i2] + 0.5); } } for (int i1 = 1; i1 < n_city; i1++) { for (int i2 = 0; i2 < i1; i2++) rg[i1][i2] = rg[i2][i1]; } // 都市を訪れる順序(初期設定) seq = new int [n_city]; seq_w1 = new int [n_city]; seq_w2 = new int [n_city]; seq_w3 = new int [n_city]; seq_w4 = new int [n_city]; seq_w5 = new int [n_city]; for (int i1 = 0; i1 < n_city; i1++) { int sw = 0; while (sw == 0) { int ct = (int)(rn.NextDouble() * n_city); if (ct >= n_city) ct = n_city - 1; seq[i1] = ct; sw = 1; for (int i2 = 0; i2 < i1 && sw > 0; i2++) { if (ct == seq[i2]) sw = 0; } } } } /****************/ /* 最適化の実行 */ /****************/ public int Optimize () { int sw; // 初期設定 range = kyori(n_city, seq, rg); // 初期状態の出力(文字) if (out_m >= 0 && Math.Abs(out_lvl) > 0) { if (seisu > -2) Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range); else Console.WriteLine("***試行回数 " + n_tri + " 距離 " + range); Output(out_lvl); } // 実行 sw = 1; for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) { // 改善 sw = Change(); // 出力(文字) if (out_d > 0 && n_tri%out_d == 0) { if (seisu > -2) Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range); else Console.WriteLine("***試行回数 " + n_tri + " 距離 " + range); } if (out_m >= 0 && Math.Abs(out_lvl) > 0) { if (n_tri%Math.Abs(out_lvl) == 0) Output(out_lvl); } } // 最終出力(文字) if (out_m >= 0) { n_tri--; if (seisu > -2) Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range); else Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5)); Output(out_lvl); } return n_tri; } /*******************************/ /* 出力 */ /* sw : >= 0 : 出力先未定 */ /* < 0 : ファイル */ /*******************************/ void Output(int sw) { int pr = -1; if (sw >= 0) { Console.Write(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? "); pr = int.Parse(Console.ReadLine()); } if (pr != 0) { StreamWriter OUT = new StreamWriter(o_file, true); if (pr < 0) { DateTime now = DateTime.Now; // 現在時刻の獲得 if (seisu > -2) OUT.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range + " 時間 " + now); else OUT.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5) + " 時間 " + now); } if (out_m == 0) { int k = 0; for (int i1 = 0; i1 < n_city; i1++) { int n = seq[i1]; if (pr < 0) { if (seisu > 0) OUT.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else OUT.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]); } else { if (seisu > 0) Console.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]); else Console.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]); } if (pr > 0) { k++; if (k == pr) { Console.ReadLine(); k = 0; } } } } OUT.Close(); } } /**************************************/ /* エッジの入れ替え */ /* return : =0 : 改善がなかった */ /* =1 : 改善があった */ /**************************************/ int Change() { double max, max1 = 0.0, r; int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4, n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2; max = range; // // 近傍を可変 // if (fix == 0) { // 初期設定(k=2) k = 2; for (i1 = 0; i1 < n_city; i1++) { seq_w4[i1] = seq[i1]; seq_w3[i1] = 0; } // 評価 sw2 = 0; for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) { n = (i0 == 0) ? n_city-1 : n_city; for (i1 = i0+2; i1 < n && sw2 < 2; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0+1]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[i0+1]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[i0]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[i0]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; k1 = i0; k2 = i0 + 1; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; if (sel > 0 && max1 < max) sw2 = 2; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[k1] = 1; seq_w3[k2] = 1; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; // 実行(k>2) while (sw1 == 0) { // 評価 sw2 = 0; for (i1 = 0; i1 < n_city; i1++) { // 相手の場所 k3 = i1; k4 = k3 + 1; if (k4 > n_city-1) k4 = 0; if (seq_w3[k3] == 0 && seq_w3[k4] == 0) { // 順番の入れ替え n3 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k2]) n3 = i2 + 1; } nn = n3; n4 = -1; for (i2 = 0; i2 < n_city && n4 < 0; i2++) { if (nn > n_city-1) nn = 0; if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4]) n4 = seq_w4[nn]; else nn++; } if (n4 == seq[k4]) { n4 = k3; k3 = k4; k4 = n4; } // 評価 seq_w1[0] = seq[k4]; seq_w1[1] = seq[k2]; n4 = -1; nn = 2; while (n4 < 0) { if (n3 > n_city-1) n3 = 0; seq_w1[nn] = seq_w4[n3]; if (seq_w4[n3] == seq[k3]) n4 = 1; nn++; n3++; } seq_w1[nn] = seq[k1]; nn++; n3 = -1; n4 = -1; for (i2 = 0; i2 < n_city && n3 < 0; i2++) { if (seq_w4[i2] == seq[k1]) { n3 = i2 - 1; if (n3 < 0) n3 = n_city - 1; } } while (n4 < 0) { if (seq_w4[n3] == seq[k4]) n4 = 1; else { seq_w1[nn] = seq_w4[n3]; nn++; n3--; if (n3 < 0) n3 = n_city - 1; } } r = kyori(n_city, seq_w1, rg); // 最適値の保存 if (sw2 == 0 || r < max1) { sw2 = 1; max1 = r; n1 = k3; n2 = k4; for (i2 = 0; i2 < n_city; i2++) seq_w5[i2] = seq_w1[i2]; } } } // 最適値の保存と近傍の増加 if (sw2 > 0) { if (max1 < max) { sw = 1; max = max1; for (i1 = 0; i1 < n_city; i1++) seq_w2[i1] = seq_w5[i1]; } if (k < neib) { for (i1 = 0; i1 < n_city; i1++) seq_w4[i1] = seq_w5[i1]; seq_w3[n1] = 1; seq_w3[n2] = 1; k1 = n2; k++; } else sw1 = 1; } else sw1 = 1; } } // // 近傍を固定 // else { n3 = (int)(rn.NextDouble() * (n_city - 2)); if (n3 > n_city-3) n3 = n_city - 3; // 2近傍 for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { if (n3 == 0) n1 = n_city - 2; else n1 = n_city - 1; for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) { // 枝の場所((n3,n3+1), (k1,k2)) k1 = i2; if (i2 == n_city-1) k2 = 0; else k2 = i2 + 1; // 枝の入れ替え seq_w1[0] = seq[n3]; k = 1; for (i3 = k1; i3 >= n3+1; i3--) { seq_w1[k] = seq[i3]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価 r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } } n3++; if (n3 > n_city-3) n3 = 0; } // 3近傍 if (neib == 3 && ch == 0) { for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) { n1 = n_city - 2; n2 = n_city - 1; for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) { for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) { // 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3; if (i3 == n_city-1) k2 = 0; else k2 = i3 + 1; // 枝の入れ替えと評価 // 入れ替え(その1) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その1) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その2) seq_w1[0] = seq[n3]; k = 1; for (i4 = k1; i4 >= i2+1; i4--) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その2) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その3) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = i2; i4 >= n3+1; i4--) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その3) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } // 入れ替え(その4) seq_w1[0] = seq[n3]; k = 1; for (i4 = i2+1; i4 <= k1; i4++) { seq_w1[k] = seq[i4]; k++; } for (i4 = n3+1; i4 <= i2; i4++) { seq_w1[k] = seq[i4]; k++; } nn = k2; while (nn != n3) { seq_w1[k] = seq[nn]; k++; nn++; if (nn > n_city-1) nn = 0; } // 評価(その4) r = kyori(n_city, seq_w1, rg); if (r < max) { max = r; sw = 1; for (i3 = 0; i3 < n_city; i3++) seq_w2[i3] = seq_w1[i3]; if (sel > 0) ch = 1; } } } n3++; if (n3 > n_city-3) n3 = 0; } } } // 設定 if (sw > 0) { range = max; for (i1 = 0; i1 < n_city; i1++) seq[i1] = seq_w2[i1]; } return sw; } /*********************************/ /* 距離の計算 */ /* n_c : 都市の数 */ /* p : 都市番号 */ /* rg : 都市間の距離 */ /* return : 距離 */ /*********************************/ public static float kyori(int n_c, int [] p, float [][] rg) { float range = 0; int n1 = p[0], n2; for (int i1 = 1; i1 < n_c; i1++) { n2 = p[i1]; range += rg[n1][n2]; n1 = n2; } n2 = p[0]; range += rg[n1][n2]; return range; } } class Program { static void Main(String[] args) { // 入力ミス if (args.Length == 0) Console.WriteLine("***error ケーススタディファイル名を入力して下さい"); // 入力OK else { // 入力データファイル名と問題数 String[] lines = File.ReadAllLines(args[0]); String[] str = lines[0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); int nm = int.Parse(str[1]); // 問題の数 for (int i0 = 1; i0 <= nm; i0++) { // 各問題の実行 str = lines[i0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries); String i_file = str[1]; // データファイル名 int n = int.Parse(str[3]); // 繰り返し回数 Partition pt = new Partition(i_file); double mean = 0.0; int max = -1; // 乱数の初期値を変える for (int i1 = 0; i1 < n; i1++) { Console.WriteLine(); Console.WriteLine("+++++問題 " + i_file + "+++++"); // 最適化 pt.Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値 // 最適値とその平均の計算 mean += pt.Max; if (max < 0 || pt.Max < max) max = pt.Max; } mean /= n; // 結果 if (pt.out_m <= 0) Console.WriteLine(" -----最小 " + max + " 平均 " + mean + "-----"); else { StreamWriter OUT = new StreamWriter(pt.o_file, true); OUT.WriteLine(" -----最小 " + max + " 平均 " + mean + "-----"); OUT.Close(); } } } } } //------------------------ケーススタディデータ(data.txt)------ /* 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 */ //---------------------データファイル(data1.txt)------------ /* 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 */ //---------------------データファイル(data2.txt)------------ /* 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 */
'**************************' ' 巡回セールスマン問題 ' ' (分割法) ' ' coded by Y.Suganuma ' '**************************' Imports System.IO Imports System.Text.RegularExpressions Module Test Sub Main(args() As String) ' 入力ミス If args.Length = 0 Console.WriteLine("***error ケーススタディファイル名を入力して下さい") ' 入力OK Else Dim MS As Regex = New Regex("\s+") ' 入力データファイル名と問題数 Dim inp As StreamReader = New StreamReader(args(0)) Dim str() As String = MS.Split(inp.ReadLine().Trim()) Dim nm As Integer = Integer.Parse(str(1)) ' 問題の数 For i0 As Integer = 1 To nm ' 各問題の実行 str = MS.Split(inp.ReadLine().Trim()) Dim i_file As String = str(1) ' データファイル名 Dim n As Integer = Integer.Parse(str(3)) ' 繰り返し回数 Dim pt As Partition = new Partition(i_file) Dim mean As Double = 0.0 Dim max As Integer = -1 ' 乱数の初期値を変える For i1 As Integer = 0 To n-1 Console.WriteLine() Console.WriteLine("+++++問題 " & i_file & "+++++") ' 最適化 pt.Optimize(1000 * i1 + 1234567) ' 引数は乱数の初期値 ' 最適値とその平均の計算 mean += pt.Max If max < 0 or pt.Max < max max = pt.Max End If Next mean /= n ' 結果 If pt.out_m <= 0 Console.WriteLine(" -----最小 " & max & " 平均 " & mean & "-----") Else Dim Out As StreamWriter = New StreamWriter(pt.o_file, true) OUT.WriteLine(" -----最小 " & max & " 平均 " & mean & "-----") OUT.Close() End If Next inp.Close() End If End Sub '*******************************' ' 距離の計算 ' ' n_c : 都市の数 ' ' p : 都市番号 ' ' rg : 都市間の距離 ' ' return : 距離 ' '*******************************' Function kyori(n_c As Integer, p() As Integer, rg(,) As Double) Dim range As Double = 0 Dim n1 As Integer = p(0) Dim n2 As Integer For i1 As Integer = 1 To n_c-1 n2 = p(i1) range += rg(n1,n2) n1 = n2 Next n2 = p(0) range += rg(n1,n2) Return range End Function '***********************' ' クラスPartitionの定義 ' '***********************' Class Partition Private rg(,) As Double ' 都市間の距離 Private p_x() As Double ' x軸の分割点 Private p_y() As Double ' y軸の分割点 Private fix As Integer ' =1 : 近傍を固定 ' =0 : 近傍を可変 Private max_try As Integer ' 最大試行回数 Private seq_w1() As Integer ' 作業領域 Private seq_w2() As Integer ' 作業領域 Private neib As Integer ' 近傍(2 or 3) Public seisu As Integer ' 位置データの表現方法 ' =1 : 整数 ' =-1 : 実数(距離を整数計算) ' =-2 : 実数(距離を実数計算) Private sel As Integer ' エッジの選択方法 ' =0 : 最良のものを選択 ' =1 : 最初のものを選択 Private rn As Random ' 乱数 Private city(,) As Double '都市の位置データ Private city_i(,) As Double '都市の位置データ(作業領域) Public Max As Integer ' 最適経路の長さ Private n_city As Integer ' 都市の数 Private n_seq(,) As Integer ' 各領域の都市数 Private n_seq1(,) As Integer ' 各領域の都市数(ワーク) Private n_p_x As Integer ' x軸方向の分割数 Private n_p_y As Integer ' y軸方向の分割数 Public out_m As Integer ' 出力方法 ' =-1 : ディスプレイ(経路長だけ) ' =0 : ディスプレイ ' =1 : ファイル ' =2 : ファイル(経路長だけ) Private range As Integer ' 現在の評価値 Private seed As Integer ' 乱数の初期値 Private seq(,,) As Integer ' 経路 Private seq1(,,) As Integer ' 経路(ワーク) Private state(,) As Integer ' 領域結合用ワーク Public o_file As String ' 出力ファイル名 Private i_file As String ' 入力ファイル名 '**************************' ' コンストラクタ ' ' i_file : ファイル名 ' '**************************' Public Sub New (name As String) i_file = name Dim MS As Regex = New Regex("\s+") Dim inp As StreamReader = New StreamReader(i_file) ' 基本データ ' 1行目 Dim str() As String = MS.Split(inp.ReadLine().Trim()) n_city = Integer.Parse(str(1)) sel = Integer.Parse(str(3)) neib = Integer.Parse(str(5)) seisu = Integer.Parse(str(7)) If neib < 0 neib = -neib fix = 0 Else fix = 1 End If ' 2行目 str = MS.Split(inp.ReadLine().Trim()) out_m = Integer.Parse(str(1)) o_file = str(3) ' 3行目 str = MS.Split(inp.ReadLine().Trim()) n_p_x = Integer.Parse(str(2)) n_p_y = Integer.Parse(str(4)) max_try = Integer.Parse(str(6)) ' 都市の位置データ ReDim city(n_city, 2) For i1 As Integer = 0 To n_city-1 str = MS.Split(inp.ReadLine().Trim()) city(i1,0) = Double.Parse(str(0)) city(i1,1) = Double.Parse(str(1)) Next inp.Close() ' 距離テーブルの作成 ReDim rg(n_city, n_city) For i1 As Integer = 0 To n_city-1 For i2 As Integer = i1+1 To n_city-1 Dim x As Double = city(i2,0) - city(i1,0) Dim y As Double = city(i2,1) - city(i1,1) rg(i1,i2) = Math.Sqrt(x * x + y * y) If seisu > -2 rg(i1,i2) = Math.Floor(rg(i1,i2) + 0.5) End If Next Next For i1 As Integer = 1 To n_city-1 For i2 As Integer = 0 To i1-1 rg(i1,i2) = rg(i2,i1) Next Next ' 作業領域 ReDim state(n_p_y, n_p_x) ReDim n_seq(n_p_y, n_p_x) ReDim n_seq1(n_p_y, n_p_x) ReDim seq(n_p_y, n_p_x, n_city) ReDim seq1(n_p_y, n_p_x, n_city) ReDim seq_w1(n_city) ReDim seq_w2(n_city) ReDim p_x(n_p_x) ReDim p_y(n_p_y) ' 都市の分割 For i1 As Integer = 0 To n_city-1 seq_w1(i1) = 0 Next Dim min_x As Double = city(0,0) Dim max_x As Double = city(0,0) Dim min_y As Double = city(0,1) Dim max_y As Double = city(0,1) For i1 As Integer = 1 To n_city-1 If city(i1,0) < min_x min_x = city(i1,0) Else If city(i1,0) > max_x max_x = city(i1,0) End If End If If city(i1,1) < min_y min_y = city(i1,1) Else If city(i1,1) > max_y max_y = city(i1,1) End If End If Next Dim s_x As Double = (max_x - min_x) / n_p_x p_x(0) = min_x + s_x p_x(n_p_x-1) = max_x For i1 As Integer = 1 To n_p_x-2 p_x(i1) = p_x(0) + i1 * s_x Next Dim s_y As Double = (max_y - min_y) / n_p_y p_y(0) = min_y + s_y p_y(n_p_y-1) = max_y For i1 As Integer = 1 To n_p_y-2 p_y(i1) = p_y(0) + i1 * s_y Next Dim max As Integer = 0 For i1 As Integer = 0 To n_p_y-1 For i2 As Integer = 0 To n_p_x-1 Dim n As Integer = 0 For i3 As Integer = 0 To n_city-1 If seq_w1(i3) = 0 If city(i3,0) <= p_x(i2) and city(i3,1) <= p_y(i1) seq_w1(i3) = 1 seq_w2(n) = i3 n += 1 End If End If Next n_seq1(i1,i2) = n If n > 0 For i3 As Integer = 0 To n-1 seq1(i1,i2,i3) = seq_w2(i3) Next If n > max max = n End If End If Next Next For i1 As Integer = 0 To n_p_y-1 For i2 As Integer = 0 To n_p_x-1 state(i1,i2) = 1 If n_seq1(i1,i2) > 0 state(i1,i2) = 0 End If Next Next ' 作業領域 Console.WriteLine("最大都市数 " & max) ReDim city_i(max, 2) End Sub '****************************' ' 最適化の実行 ' ' seed_i : 乱数の初期値 ' '****************************' Public Sub Optimize(seed_i As Integer) ' 乱数の初期設定 seed = seed_i rn = new Random(seed) ' rn.NextDouble() For i1 As Integer = 0 To n_p_y-1 For i2 As Integer = 0 To n_p_x-1 n_seq(i1,i2) = n_seq1(i1,i2) state(i1,i2) = 1 If n_seq1(i1,i2) > 0 state(i1,i2) = 0 End If For i3 As Integer = 0 To n_seq1(i1,i2)-1 seq(i1,i2,i3) = seq1(i1,i2,i3) Next Next Next ' 分割数と開始時間の出力(ファイルへ出力する場合) If out_m > 0 Output(0) End If ' 分割毎の最適化 For i1 As Integer = 0 To n_p_y-1 For i2 As Integer = 0 To n_p_x-1 If n_seq(i1,i2) > 3 ' 近傍の大きさ Dim nb As Integer if n_seq(i1,i2) > 3 nb = neib Else nb = 2 End If ' 都市位置データの設定 For i3 As Integer = 0 To n_seq(i1,i2)-1 Dim k As Integer = seq(i1,i2,i3) city_i(i3,0) = city(k,0) city_i(i3,1) = city(k,1) Next ' 最適化 Dim it As Iteration = new Iteration (n_seq(i1,i2), max_try, seisu, sel, nb, fix, 0, -1, 0, o_file, city_i, rn) Dim max As Integer = it.Optimize() ' 結果の保存 For i3 As Integer = 0 To n_seq(i1,i2)-1 Dim k As Integer = it.seq(i3) seq_w1(i3) = seq(i1,i2,k) Next For i3 As Integer = 0 To n_seq(i1,i2)-1 seq(i1,i2,i3) = seq_w1(i3) Next ' 出力(文字) Dim r As Integer Dim sq(n_seq(i1,i2)) As Integer For i3 As Integer = 0 TO n_seq(i1,i2)-1 sq(i3) = seq(i1,i2,i3) Next If seisu > -2 r = Math.Floor(kyori(n_seq(i1,i2), sq, rg)) Else r = Math.Floor(kyori(n_seq(i1,i2), sq, rg) + 0.5) End If Console.WriteLine(" y " & (i1+1) & " x " & (i2+1) & " n_city " & n_seq(i1,i2) & " range " & r & " (trial " & max & ")") End If Next Next ' 経路の接続 range = Connect() Max = range ' 出力(文字) Output(n_city) End Sub '*********************' ' 出力 ' ' n_c : 都市の数 ' '*********************' Sub Output(n_c As Integer) Dim OUT As StreamWriter = new StreamWriter(o_file, true) If out_m <= 0 Console.WriteLine("距離 " & range) Console.ReadLine() Else Dim now1 As DateTime = DateTime.Now ' 現在時刻の獲得 If n_c > 0 Console.WriteLine("距離 " & range) OUT.WriteLine(" 距離 " & range & " 時間 " & now1) Else OUT.WriteLine("問題 " & i_file & " 乱数 " & seed & " 分割 " & n_p_x & " " & n_p_y & " 時間 " & now1) End If End If Dim k As Integer = 0 If n_c > 0 and (out_m = 0 or out_m = 1) For i1 As Integer = 0 To n_c-1 Dim n As Integer = seq_w1(i1) If out_m > 0 If seisu > 0 OUT.WriteLine(" " & n & " " & Math.Floor(city(n,0)) & " " & Math.Floor(city(n,1))) Else OUT.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1)) End If Else If seisu > 0 Console.WriteLine(" " & n & " " & Math.Floor(city(n,0)) & " " & Math.Floor(city(n,1))) Else Console.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1)) End If End If If out_m = 0 k += 1 If k = 10 Console.ReadLine() k = 0 End If End If Next End If OUT.Close() End Sub '**********************' ' 分割された領域の接続 ' '**********************' Function Connect() Dim wd As Double Dim wd1 As Double Dim wa1 As Double Dim wa2 As Double Dim min As Double = 0 Dim i1 As Integer Dim i2 As Integer Dim i3 As Integer Dim i4 As Integer Dim k As Integer Dim k1 As Integer = 0 Dim k2 As Integer = 0 Dim k3 As Integer = 0 Dim k4 As Integer = 0 Dim min_c As Integer = 0 Dim n As Integer Dim r As Integer Dim r1 As Integer = 0 Dim r2 As Integer = 0 Dim r3 As Integer = 0 Dim r4 As Integer = 0 Dim s1 As Integer = 0 Dim s2 As Integer = 0 Dim sw As Integer = 1 ' ' 領域が1つの場合 ' If n_p_x = 1 and n_p_y = 1 For i1 = 0 To n_seq(0,0)-1 seq_w1(i1) = seq(0,0,i1) Next ' ' 領域が複数の場合 ' Else Do While sw > 0 ' 最小節点領域 min_c = n_city sw = 0 For i1 = 0 To n_p_y-1 For i2 = 0 To n_p_x-1 If state(i1,i2) = 0 and n_seq(i1,i2) < min_c sw = 1 r1 = i1 r2 = i2 min_c = n_seq(i1,i2) End If Next Next ' 結合する対象領域の決定 If sw > 0 sw = 0 For i1 = 0 To n_p_y-1 For i2 = 0 To n_p_x-1 If state(i1,i2) = 0 and (i1 <> r1 or i2 <> r2) ' 節点の数>2 If n_seq(r1,r2) > 1 For i3 = 0 To n_seq(r1,r2)-1 k1 = seq(r1,r2,i3) if i3 = n_seq(r1,r2)-1 k2 = seq(r1,r2,0) Else k2 = seq(r1,r2,i3+1) End If wd1 = rg(k1,k2) For i4 = 0 To n_seq(i1,i2)-1 k3 = seq(i1,i2,i4) If i4 = n_seq(i1,i2)-1 k4 = seq(i1,i2,0) Else k4 = seq(i1,i2,i4+1) End If wd = wd1 + rg(k3,k4) wa1 = rg(k1,k3) + rg(k2,k4) wa2 = rg(k1,k4) + rg(k2,k3) If sw = 0 or wa1-wd < min min = wa1 - wd r3 = i1 r4 = i2 If i3 = n_seq(r1,r2)-1 s1 = 0 Else s1 = i3 + 1 End If If i4 = n_seq(i1,i2)-1 s2 = 0 Else s2 = i4 + 1 End If sw = -1 End If If sw = 0 or wa2-wd < min min = wa2 - wd r3 = i1 r4 = i2 s1 = i3 s2 = 0 If i4 = n_seq(i1,i2)-1 s2 = 0 Else s2 = i4 + 1 End If sw = 1 End If Next Next ' 節点の数=1 Else k1 = seq(r1,r2,0) If n_seq(i1,i2) > 1 For i4 = 0 To n_seq(i1,i2)-1 k3 = seq(i1,i2,i4) If i4 = n_seq(i1,i2)-1 k4 = seq(i1,i2,0) Else k4 = seq(i1,i2,i4+1) End If wd = rg(k3,k4) wa1 = rg(k1,k3) + rg(k1,k4) If sw = 0 or wa1-wd < min min = wa1 - wd r3 = i1 r4 = i2 s1 = 0 If i4 = n_seq(i1,i2)-1 s2 = 0 Else s2 = i4 + 1 End If sw = 1 End If Next Else k3 = seq(i1,i2,0) wa1 = rg(k1,k3) If sw = 0 or wa1 < min min = wa1 r3 = i1 r4 = i2 s1 = 0 s2 = 0 sw = 1 End If End If End If End If Next Next ' 領域の結合 seq_w1(0) = seq(r1,r2,s1) k = 1 n = s2 For i1 = 0 To n_seq(r3,r4)-1 seq_w1(k) = seq(r3,r4,n) k += 1 n += 1 If n > n_seq(r3,r4)-1 n = 0 End If Next If sw > 0 n = s1 + 1 For i1 = 0 To n_seq(r1,r2)-2 If n > n_seq(r1,r2)-1 n = 0 End If seq_w1(k) = seq(r1,r2,n) k += 1 n += 1 Next Else n = s1 - 1 For i1 = 0 To n_seq(r1,r2)-2 If n < 0 n = n_seq(r1,r2) - 1 End If seq_w1(k) = seq(r1,r2,n) k += 1 n -= 1 Next End If ' 状態の変更 n_seq(r1,r2) += n_seq(r3,r4) state(r3,r4) = 1 For i1 = 0 To n_seq(r1,r2)-1 seq(r1,r2,i1) = seq_w1(i1) Next sw = 1 End If Loop End If If seisu > -2 r = Math.Floor(kyori(n_city, seq_w1, rg)) Else r = Math.Floor(kyori(n_city, seq_w1, rg) + 0.5) End If Return r End Function End Class '***********************' ' クラスIterationの定義 ' '***********************' Class Iteration Private rg(,) As Double ' 都市間の距離 Private fix As Integer ' =1 : 近傍を固定 ' =0 : 近傍を可変 Private max_try As Integer ' 最大試行回数 Private neib As Integer ' 近傍(2 or 3) Private out_d As Integer ' 表示間隔 Private seq_w1() As Integer ' 都市を訪れる順序(ワーク) Private seq_w2() As Integer ' 都市を訪れる順序(ワーク) Private seq_w3() As Integer ' 都市を訪れる順序(ワーク) Private seq_w4() As Integer ' 都市を訪れる順序(ワーク) Private seq_w5() As Integer ' 都市を訪れる順序(ワーク) Private out_lvl As Integer ' 出力レベル ' =0 : 最終出力だけ ' n>0 : n世代毎に出力(負の時はファイル) Private out_m As Integer ' 出力方法 ' =-1 : 出力しない ' =0 : すべてを出力 ' =1 : 評価値だけを出力(最終結果だけはすべてを出力) Private seisu As Integer ' 位置データの表現方法 ' =1 : 整数 ' =-1 : 実数(距離を整数計算) ' =-2 : 実数(距離を実数計算) Private sel As Integer ' エッジの選択方法 ' =0 : 最良のものを選択 ' =1 : 最初のものを選択 Private o_file As String ' 出力ファイル名 Private rn As Random ' 乱数 Private range As Double ' 現在の評価値 Private city(,) As Double '都市の位置データ Private n_city As Integer ' 都市の数 Private n_tri As Integer ' 試行回数 Public seq() As Integer ' 都市を訪れる順序 '********************************' ' コンストラクタ ' ' n_city_i : 都市の数 ' ' max_try_i : 最大試行回数 ' ' sei_i : 整数 or 実数 ' ' sel_i : エッジの選択方法 ' ' neib_i : 近傍(2 or 3) ' ' fix_i : 近傍の扱い方 ' ' out_lvl_i : 出力レベル ' ' out_m_i : 出力方法 ' ' out_d_i : 表示間隔 ' ' o_file_i : 出力ファイル名 ' ' city_i : 都市の位置データ ' ' rn_i : 乱数 ' '********************************' Public Sub New (n_city_i As Integer, max_tri_i As Integer, sei_i As Integer, sel_i As Integer, neib_i As Integer, fix_i As Integer, out_lvl_i As Integer, out_m_i As Integer, out_d_i As Integer, o_file_i As String, city_i(,) As Double, rn_i As Random) ' 値の設定 n_city = n_city_i max_try = max_tri_i seisu = sei_i sel = sel_i neib = neib_i fix = fix_i out_lvl = out_lvl_i out_m = out_m_i out_d = out_d_i o_file = o_file_i rn = rn_i n_tri = 0 ' 都市の位置データ ReDim city(n_city, 2) For i1 As Integer = 0 To n_city-1 city(i1,0) = city_i(i1,0) city(i1,1) = city_i(i1,1) Next ' 距離テーブルの作成 ReDim rg(n_city, n_city) For i1 As Integer = 0 To n_city-1 For i2 As Integer = i1+1 To n_city-1 Dim x As Double = city(i2,0) - city(i1,0) Dim y As Double = city(i2,1) - city(i1,1) rg(i1,i2) = Math.Sqrt(x * x + y * y) If seisu > -2 rg(i1,i2) = Math.Floor(rg(i1,i2) + 0.5) End If Next Next For i1 As Integer = 1 To n_city-1 For i2 As Integer = 0 To i1-1 rg(i1,i2) = rg(i2,i1) Next Next ' 都市を訪れる順序(初期設定) ReDim seq(n_city) ReDim seq_w1(n_city) ReDim seq_w2(n_city) ReDim seq_w3(n_city) ReDim seq_w4(n_city) ReDim seq_w5(n_city) For i1 As Integer = 0 To n_city-1 Dim sw As Integer = 0 Do While sw = 0 Dim ct As Integer = Math.Floor(rn.NextDouble() * n_city) If ct >= n_city ct = n_city - 1 End If seq(i1) = ct sw = 1 Dim ii As Integer = 0 Do While ii < i1 and sw > 0 If ct = seq(ii) sw = 0 End If ii += 1 Loop Loop Next End Sub '**************' ' 最適化の実行 ' '**************' Public Function Optimize () Dim sw As Integer ' 初期設定 range = kyori(n_city, seq, rg) ' 初期状態の出力(文字) If out_m >= 0 and Math.Abs(out_lvl) > 0 If seisu > -2 Console.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range)) Else Console.WriteLine("***試行回数 " & n_tri & " 距離 " & range) End If Output(out_lvl) End If ' 実行 sw = 1 n_tri = 1 Do While n_tri <= max_try and sw > 0 ' 改善 sw = Change() ' 出力(文字) If out_d > 0 If (n_tri Mod out_d) = 0 If seisu > -2 Console.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range)) Else Console.WriteLine("***試行回数 " & n_tri & " 距離 " & range) End If End If End If If out_m >= 0 and Math.Abs(out_lvl) > 0 If (n_tri Mod Math.Abs(out_lvl)) = 0 Output(out_lvl) End If End If Loop ' 最終出力(文字) If out_m >= 0 n_tri -= 1 If seisu > -2 Console.WriteLine("***試行回数 " & n_tri & " 距離 " + Math.Floor(range)) Else Console.WriteLine("***試行回数 " & n_tri & " 距離 " + Math.Floor(range+0.5)) End If Output(out_lvl) End If Return n_tri End Function '*****************************' ' 出力 ' ' sw : >= 0 : 出力先未定 ' ' < 0 : ファイル ' '*****************************' Sub Output(sw As Integer) Dim pr As Integer = -1 If sw >= 0 Console.Write(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ") pr = Integer.Parse(Console.ReadLine()) End If If pr <> 0 Dim Out As StreamWriter = new StreamWriter(o_file, true) If pr < 0 Dim now1 As DateTime = DateTime.Now ' 現在時刻の獲得 If seisu > -2 OUT.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range) & " 時間 " & now1) Else OUT.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range+0.5) & " 時間 " & now1) End If End If If out_m = 0 Dim k As Integer = 0 For i1 As Integer = 0 To n_city-1 Dim n As Integer = seq(i1) If pr < 0 If seisu > 0 OUT.WriteLine(" " & n & " " & Math.floor(city(n,0)) & " " & Math.floor(city(n,1))) Else OUT.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1)) End If Else If seisu > 0 Console.WriteLine(" " & n & " " & Math.floor(city(n,0)) & " " & Math.floor(city(n,1))) Else Console.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1)) End If End If If pr > 0 k += 1 If k = pr Console.ReadLine() k = 0 End If End If Next End If OUT.Close() End If End Sub '************************************' ' エッジの入れ替え ' ' return : =0 : 改善がなかった ' ' =1 : 改善があった ' '************************************' Function Change() Dim max As Double = range Dim max1 As Double = 0.0 Dim r As Double Dim ch As Integer = 0 Dim i0 As Integer Dim i1 As Integer Dim i2 As Integer Dim i3 As Integer Dim i4 As Integer Dim k As Integer Dim k1 As Integer = 0 Dim k2 As Integer = 0 Dim k3 As Integer Dim k4 As Integer Dim n As Integer Dim nn As Integer Dim n1 As Integer = 0 Dim n2 As Integer = 0 Dim n3 As Integer Dim n4 As Integer Dim sw As Integer = 0 Dim sw1 As Integer = 0 Dim sw2 ' ' 近傍を可変 ' If fix = 0 ' 初期設定(k=2) k = 2 For i1 = 0 To n_city-1 seq_w4(i1) = seq(i1) seq_w3(i1) = 0 Next ' 評価 sw2 = 0 i0 = 0 Do While i0 < n_city-2 and sw2 < 2 If i0 = 0 n = n_city - 1 Else n = n_city End If i1 = i0 + 2 Do While i1 < n and sw2 < 2 ' 相手の場所 k3 = i1 k4 = k3 + 1 If k4 > n_city-1 k4 = 0 End If ' 順番の入れ替え n3 = -1 i2 = 0 Do While i2 < n_city and n3 < 0 If seq_w4(i2) = seq(i0+1) n3 = i2 + 1 End If i2 += 1 Loop nn = n3 n4 = -1 i2 = 0 Do While i2 < n_city and n4 < 0 If nn > n_city-1 nn = 0 End If If seq_w4(nn) = seq(k3) or seq_w4(nn) = seq(k4) n4 = seq_w4(nn) Else nn += 1 End If i2 += 1 Loop If n4 = seq(k4) n4 = k3 k3 = k4 k4 = n4 End If ' 評価 seq_w1(0) = seq(k4) seq_w1(1) = seq(i0+1) n4 = -1 nn = 2 Do While n4 < 0 If n3 > n_city-1 n3 = 0 End If seq_w1(nn) = seq_w4(n3) If seq_w4(n3) = seq(k3) n4 = 1 End If nn += 1 n3 += 1 Loop seq_w1(nn) = seq(i0) nn += 1 n3 = -1 n4 = -1 i2 = 0 Do While i2 < n_city and n3 < 0 If seq_w4(i2) = seq(i0) n3 = i2 - 1 If n3 < 0 n3 = n_city - 1 End If End If i2 += 1 Loop Do While n4 < 0 If seq_w4(n3) = seq(k4) n4 = 1 Else seq_w1(nn) = seq_w4(n3) nn += 1 n3 -= 1 If n3 < 0 n3 = n_city - 1 End If End If Loop r = kyori(n_city, seq_w1, rg) ' 最適値の保存 If sw2 = 0 or r < max1 sw2 = 1 max1 = r n1 = k3 n2 = k4 k1 = i0 k2 = i0 + 1 For i2 = 0 To n_city-1 seq_w5(i2) = seq_w1(i2) Next If sel > 0 and max1 < max sw2 = 2 End If End If i1 += 1 Loop i0 += 1 Loop ' 最適値の保存と近傍の増加 If sw2 > 0 If max1 < max sw = 1 max = max1 For i1 = 0 To n_city-1 seq_w2(i1) = seq_w5(i1) Next End If If k < neib For i1 = 0 To n_city-1 seq_w4(i1) = seq_w5(i1) Next seq_w3(k1) = 1 seq_w3(k2) = 1 seq_w3(n1) = 1 seq_w3(n2) = 1 k1 = n2 k += 1 Else sw1 = 1 End If Else sw1 = 1 End If ' 実行(k>2) Do While sw1 = 0 ' 評価 sw2 = 0 For i1 = 0 To n_city-1 ' 相手の場所 k3 = i1 k4 = k3 + 1 If k4 > n_city-1 k4 = 0 End If If seq_w3(k3) = 0 and seq_w3(k4) = 0 ' 順番の入れ替え n3 = -1 i2 = 0 Do While i2 < n_city and n3 < 0 If (seq_w4(i2) = seq(k2)) n3 = i2 + 1 End If i2 += 1 Loop nn = n3 n4 = -1 i2 = 0 Do While i2 < n_city and n4 < 0 If nn > n_city-1 nn = 0 End If If seq_w4(nn) = seq(k3) or seq_w4(nn) = seq(k4) n4 = seq_w4(nn) Else nn += 1 End If i2 += 1 Loop If n4 = seq(k4) n4 = k3 k3 = k4 k4 = n4 End If ' 評価 seq_w1(0) = seq(k4) seq_w1(1) = seq(k2) n4 = -1 nn = 2 Do While n4 < 0 If n3 > n_city-1 n3 = 0 End If seq_w1(nn) = seq_w4(n3) If seq_w4(n3) = seq(k3) n4 = 1 End If nn += 1 n3 += 1 Loop seq_w1(nn) = seq(k1) nn += 1 n3 = -1 n4 = -1 i2 = 0 Do While i2 < n_city and n3 < 0 If seq_w4(i2) = seq(k1) n3 = i2 - 1 If n3 < 0 n3 = n_city - 1 End If End If i2 += 1 Loop Do While n4 < 0 If seq_w4(n3) = seq(k4) n4 = 1 Else seq_w1(nn) = seq_w4(n3) nn += 1 n3 -= 1 If n3 < 0 n3 = n_city - 1 End If End If Loop r = kyori(n_city, seq_w1, rg) ' 最適値の保存 If sw2 = 0 or r < max1 sw2 = 1 max1 = r n1 = k3 n2 = k4 For i2 = 0 To n_city-1 seq_w5(i2) = seq_w1(i2) Next End If End If Next ' 最適値の保存と近傍の増加 If sw2 > 0 If max1 < max sw = 1 max = max1 For i1 = 0 To n_city-1 seq_w2(i1) = seq_w5(i1) Next End If If k < neib For i1 = 0 To n_city-1 seq_w4(i1) = seq_w5(i1) Next seq_w3(n1) = 1 seq_w3(n2) = 1 k1 = n2 k += 1 Else sw1 = 1 End If Else sw1 = 1 End If Loop ' ' 近傍を固定 ' Else n3 = Math.Floor(rn.NextDouble() * (n_city - 2)) If n3 > n_city-3 n3 = n_city - 3 End If ' 2近傍 i1 = 0 Do While i1 <= n_city-3 and ch = 0 If n3 = 0 n1 = n_city - 2 Else n1 = n_city - 1 End If i2 = n3 + 2 Do While i2 <= n1 and ch = 0 ' 枝の場所((n3,n3+1), (k1,k2)) k1 = i2 If i2 = n_city-1 k2 = 0 Else k2 = i2 + 1 End If ' 枝の入れ替え seq_w1(0) = seq(n3) k = 1 For i3 = k1 To n3+1 Step -1 seq_w1(k) = seq(i3) k += 1 Next nn = k2 Do While nn <> n3 seq_w1(k) = seq(nn) k += 1 nn += 1 If nn > n_city-1 nn = 0 End If Loop ' 評価 r = kyori(n_city, seq_w1, rg) If r < max max = r sw = 1 For i3 = 0 To n_city-1 seq_w2(i3) = seq_w1(i3) Next If sel > 0 ch = 1 End If End If i2 += 1 Loop n3 += 1 If n3 > n_city-3 n3 = 0 End If i1 += 1 Loop ' 3近傍 If neib = 3 and ch = 0 i1 = 0 Do While i1 <= n_city-3 and ch = 0 n1 = n_city - 2 n2 = n_city - 1 i2 = n3 + 1 Do While i2 <= n1 and ch = 0 i3 = i2 + 1 Do While i3 <= n2 and ch = 0 ' 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2)) k1 = i3 If i3 = n_city-1 k2 = 0 Else k2 = i3 + 1 End If ' 枝の入れ替えと評価 ' 入れ替え(その1) seq_w1(0) = seq(n3) k = 1 For i4 = i2 To n3+1 Step -1 seq_w1(k) = seq(i4) k += 1 Next For i4 = k1 To i2+1 Step -1 seq_w1(k) = seq(i4) k += 1 Next nn = k2 Do While nn <> n3 seq_w1(k) = seq(nn) k += 1 nn += 1 If nn > n_city-1 nn = 0 End If Loop ' 評価(その1) r = kyori(n_city, seq_w1, rg) If r < max max = r sw = 1 For i3 = 0 To n_city-1 seq_w2(i3) = seq_w1(i3) Next If sel > 0 ch = 1 End If End If ' 入れ替え(その2) seq_w1(0) = seq(n3) k = 1 For i4 = k1 To i2+1 Step -1 seq_w1(k) = seq(i4) k += 1 Next For i4 = n3+1 To i2 seq_w1(k) = seq(i4) k += 1 Next nn = k2 Do While nn <> n3 seq_w1(k) = seq(nn) k += 1 nn += 1 If nn > n_city-1 nn = 0 End If Loop ' 評価(その2) r = kyori(n_city, seq_w1, rg) If r < max max = r sw = 1 For i3 = 0 To n_city-1 seq_w2(i3) = seq_w1(i3) Next If sel > 0 ch = 1 End If End If ' 入れ替え(その3) seq_w1(0) = seq(n3) k = 1 For i4 = i2+1 To k1 seq_w1(k) = seq(i4) k += 1 Next For i4 = i2 To n3+1 Step -1 seq_w1(k) = seq(i4) k += 1 Next nn = k2 Do While nn <> n3 seq_w1(k) = seq(nn) k += 1 nn += 1 If nn > n_city-1 nn = 0 End If Loop ' 評価(その3) r = kyori(n_city, seq_w1, rg) If r < max max = r sw = 1 For i3 = 0 To n_city-1 seq_w2(i3) = seq_w1(i3) Next If sel > 0 ch = 1 End If End If ' 入れ替え(その4) seq_w1(0) = seq(n3) k = 1 For i4 = i2+1 To k1 seq_w1(k) = seq(i4) k += 1 Next For i4 = n3+1 To i2 seq_w1(k) = seq(i4) k += 1 Next nn = k2 Do While nn <> n3 seq_w1(k) = seq(nn) k += 1 nn += 1 If nn > n_city-1 nn = 0 End If Loop ' 評価(その4) r = kyori(n_city, seq_w1, rg) If r < max max = r sw = 1 For i3 = 0 To n_city-1 seq_w2(i3) = seq_w1(i3) Next If sel > 0 ch = 1 End If End If i3 += 1 Loop i2 += 1 Loop n3 += 1 If n3 > n_city-3 n3 = 0 End If i1 += 1 Loop End If End If ' 設定 If sw > 0 range = max For i1 = 0 To n_city-1 seq(i1) = seq_w2(i1) Next End If Return sw End Function End Class End Module //------------------------ケーススタディデータ(data.txt)------ /* 問題の数 2 問題 data1.txt 繰り返し回数 2 問題 data2.txt 繰り返し回数 1 */ //---------------------データファイル(data1.txt)------------ /* 都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 2 Y 2 最大試行回数 1000 86.950684 27.711487 82.357788 16.148376 29.791260 37.959290 27.493286 1.542664 90.893555 88.734436 40.109253 92.308044 87.445068 53.474426 24.893188 99.382019 11.633301 80.616760 61.532593 8.702087 30.645752 93.598938 4.714966 81.205750 86.669922 90.858459 84.127808 52.830505 96.893311 45.832825 4.458618 34.513855 53.503418 6.959534 45.394897 12.193298 23.687744 97.676086 61.624146 46.806335 49.633789 16.419983 82.833862 74.290466 48.529053 36.628723 13.711548 5.583191 12.561035 6.739807 33.944702 26.622009 8.917236 50.190735 98.220825 98.344421 79.785156 65.419006 36.227417 56.687927 42.352295 25.862122 52.651978 12.590027 88.806152 79.957581 27.182007 51.988220 86.334229 51.142883 14.505005 35.820007 77.124023 37.855530 44.308472 0.022888 78.363037 13.533020 21.279907 55.534363 82.238770 26.612854 25.106812 88.291931 55.938721 0.532532 10.476685 59.233093 41.650391 33.729553 7.077026 4.295349 56.561279 99.641418 19.595337 34.416199 92.858887 46.705627 27.719116 35.533142 */ //---------------------データファイル(data2.txt)------------ /* 都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2 出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt 分割数 X 1 Y 1 最大試行回数 1000 8.695068 2.771149 8.235779 1.614838 2.979126 3.795929 2.749329 0.154266 9.089355 8.873444 4.010925 9.230804 8.744507 5.347443 2.489319 9.938202 1.163330 8.061676 6.153259 0.870209 */
情報学部 | 菅沼ホーム | 目次 | 索引 |