| 情報学部 | 菅沼ホーム | 目次 | 索引 |
/****************************/
/* 巡回セールスマン問題 */
/* (分割法) */
/* coded by Y.Suganuma */
/****************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "MT.h"
float kyori(int, int *, float **);
/*************************/
/* クラスPartitionの定義 */
/*************************/
class Partition {
float **city; //都市の位置データ
float **city_i; //都市の位置データ(作業領域)
float *p_x; // x軸の分割点
float *p_y; // y軸の分割点
float **rg; // 都市間の距離
long seed; // 乱数の初期値
int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
int max_try; // 最大試行回数
int n_city; // 都市の数
int **n_seq; // 各領域の都市数
int **n_seq1; // 各領域の都市数(ワーク)
int n_p_x; // x軸方向の分割数
int n_p_y; // y軸方向の分割数
int ***seq; // 経路
int ***seq1; // 経路(ワーク)
int *seq_w1; // 作業領域
int *seq_w2; // 作業領域
int neib; // 近傍(2 or 3)
int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
int **state; // 領域結合用ワーク
char *i_file; // 入力ファイル名
public:
int Max; // 最適経路の長さ
int out_m; // 出力方法
// =-1 : ディスプレイ(経路長だけ)
// =0 : ディスプレイ
// =1 : ファイル
// =2 : ファイル(経路長だけ)
char o_file[100]; // 出力ファイル名
Partition(char *); // コンストラクタ
Partition(); // コンストラクタ
~Partition(); // デストラクタ
void Optimize(long); // 最適化の実行
void Output(int, int); // 出力
int Connect(); // 分割したものを一つにまとめる
};
/*************************/
/* クラスIterationの定義 */
/*************************/
class Iteration {
float **city; //都市の位置データ
float **rg; // 都市間の距離
int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
int max_try; // 最大試行回数
int n_city; // 都市の数
int out_d; // 表示間隔
int *seq_w1; // 都市を訪れる順序(ワーク)
int *seq_w2; // 都市を訪れる順序(ワーク)
int *seq_w3; // 都市を訪れる順序(ワーク)
int *seq_w4; // 都市を訪れる順序(ワーク)
int *seq_w5; // 都市を訪れる順序(ワーク)
int neib; // 近傍(2 or 3)
int out_lvl; // 出力レベル
// =0 : 最終出力だけ
// n>0 : n世代毎に出力(負の時はファイル)
int out_m; // 出力方法
// =-1 : 出力しない
// =0 : すべてを出力
// =1 : 評価値だけを出力(最終結果だけはすべてを出力)
int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
char o_file[100]; // 出力ファイル名
public:
int *seq; // 都市を訪れる順序
Iteration (int, int, int, int, int, int, int, int, int, char *, float **);// コンストラクタ
~Iteration(); // デストラクタ
int Optimize(); // 最適化の実行
int Change(double *); // 改善
void Output(int, int, double); // 出力
};
/**************************/
/* コンストラクタ */
/* name : ファイル名 */
/**************************/
Partition::Partition(char *name)
{
double x, y;
float max_x, max_y, min_x, min_y, s_x, s_y;
int i1, i2, i3, max = 0, n;
FILE *in;
// ファイルのオープン
i_file = name;
in = fopen(name, "r");
if (in == NULL) {
printf("***error データファイル名が不適当\n");
exit(1);
}
// 基本データ
fscanf(in, "%*s %d %*s %d %*s %d %*s %d", &n_city, &sel, &neib, &seisu);
fscanf(in, "%*s %d %*s %s", &out_m, o_file);
fscanf(in, "%*s %*s %d %*s %d %*s %d", &n_p_x, &n_p_y, &max_try);
if (neib < 0) {
neib = -neib;
fix = 0;
}
else
fix = 1;
// 都市の位置データ
city = new float * [n_city];
for (i1 = 0; i1 < n_city; i1++) {
city[i1] = new float [2];
fscanf(in, "%f %f", &city[i1][0], &city[i1][1]);
}
// ファイルのクローズ
fclose(in);
// 距離テーブルの作成
rg = new float * [n_city];
for (i1 = 0; i1 < n_city; i1++) {
rg[i1] = new float [n_city];
for (i2 = i1+1; i2 < n_city; i2++) {
x = city[i2][0] - city[i1][0];
y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (i1 = 1; i1 < n_city; i1++) {
for (i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 作業領域
state = new int * [n_p_y];
n_seq = new int * [n_p_y];
n_seq1 = new int * [n_p_y];
for (i1 = 0; i1 < n_p_y; i1++) {
n_seq[i1] = new int [n_p_x];
n_seq1[i1] = new int [n_p_x];
state[i1] = new int [n_p_x];
}
seq = new int ** [n_p_y];
seq1 = new int ** [n_p_y];
for (i1 = 0; i1 < n_p_y; i1++) {
seq[i1] = new int * [n_p_x];
seq1[i1] = new int * [n_p_x];
}
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
p_x = new float [n_p_x];
p_y = new float [n_p_y];
// 都市の分割
for (i1 = 0; i1 < n_city; i1++)
seq_w1[i1] = 0;
min_x = city[0][0];
max_x = city[0][0];
min_y = city[0][1];
max_y = city[0][1];
for (i1 = 1; i1 < n_city; i1++) {
if (city[i1][0] < min_x)
min_x = city[i1][0];
else {
if (city[i1][0] > max_x)
max_x = city[i1][0];
}
if (city[i1][1] < min_y)
min_y = city[i1][1];
else {
if (city[i1][1] > max_y)
max_y = city[i1][1];
}
}
s_x = (max_x - min_x) / n_p_x;
p_x[0] = min_x + s_x;
p_x[n_p_x-1] = max_x;
for (i1 = 1; i1 < n_p_x-1; i1++)
p_x[i1] = p_x[0] + i1 * s_x;
s_y = (max_y - min_y) / n_p_y;
p_y[0] = min_y + s_y;
p_y[n_p_y-1] = max_y;
for (i1 = 1; i1 < n_p_y-1; i1++)
p_y[i1] = p_y[0] + i1 * s_y;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
n = 0;
for (i3 = 0; i3 < n_city; i3++) {
if (seq_w1[i3] == 0) {
if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) {
seq_w1[i3] = 1;
seq_w2[n] = i3;
n++;
}
}
}
n_seq1[i1][i2] = n;
if (n > 0) {
seq[i1][i2] = new int [n_city];
seq1[i1][i2] = new int [n_city];
for (i3 = 0; i3 < n; i3++)
seq1[i1][i2][i3] = seq_w2[i3];
if (n > max)
max = n;
}
}
}
// 作業領域
printf("最大都市数 %d\n", max);
city_i = new float * [max];
for (i1 = 0; i1 < max; i1++)
city_i[i1] = new float [2];
}
/******************/
/* コンストラクタ */
/******************/
Partition::Partition()
{
n_city = 0;
}
/****************/
/* デストラクタ */
/****************/
Partition::~Partition()
{
int i1, i2;
if (n_city > 0) {
for (i1 = 0; i1 < n_city; i1++) {
delete [] rg[i1];
delete [] city[i1];
delete [] city_i[i1];
}
delete [] rg;
delete [] city;
delete [] city_i;
for (i1 = 0; i1 < n_p_y; i1++)
delete [] state[i1];
delete [] state;
delete [] seq_w1;
delete [] seq_w2;
delete [] p_x;
delete [] p_y;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (n_seq1[i1][i2] > 0) {
delete [] seq[i1][i2];
delete [] seq1[i1][i2];
}
}
delete [] seq[i1];
delete [] seq1[i1];
}
delete [] seq;
delete [] seq1;
for (i1 = 0; i1 < n_p_y; i1++) {
delete [] n_seq[i1];
delete [] n_seq1[i1];
}
delete [] n_seq;
delete [] n_seq1;
}
}
/******************************/
/* 最適化の実行 */
/* seed_i : 乱数の初期値 */
/******************************/
void Partition::Optimize(long seed_i)
{
int i1, i2, i3, k, max, nb, r = 0;
Iteration *it;
// 初期設定
seed = seed_i;
init_genrand(seed);
// 分割数と開始時間の出力
if (out_m > 0)
Output(0, r);
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
n_seq[i1][i2] = n_seq1[i1][i2];
for (i3 = 0; i3 < n_seq1[i1][i2]; i3++)
seq[i1][i2][i3] = seq1[i1][i2][i3];
}
}
// 分割毎の最適化
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (n_seq[i1][i2] > 3) {
// 近傍の大きさ
nb = (n_seq[i1][i2] > 3) ? neib : 2;
// 都市位置データの設定
for (i3 = 0; i3 < n_seq[i1][i2]; i3++) {
k = seq[i1][i2][i3];
city_i[i3][0] = city[k][0];
city_i[i3][1] = city[k][1];
}
// 最適化
it = new Iteration (n_seq[i1][i2], max_try, seisu, sel, nb, fix,
0, -1, 0, o_file, city_i);
max = it->Optimize();
// 結果の保存
for (i3 = 0; i3 < n_seq[i1][i2]; i3++) {
k = it->seq[i3];
seq_w1[i3] = seq[i1][i2][k];
}
for (i3 = 0; i3 < n_seq[i1][i2]; i3++)
seq[i1][i2][i3] = seq_w1[i3];
// 出力
r = (seisu > -2) ? (int)kyori(n_seq[i1][i2], seq[i1][i2], rg) :
(int)(kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5);
printf(" y %d x %d n_city %d range %d (trial %d)\n",
i1+1, i2+1, n_seq[i1][i2], r, max);
}
}
}
// 経路の接続
r = Connect();
// 出力
Output(n_city, r);
}
/***********************/
/* 出力 */
/* n_c : 都市の数 */
/* r : 距離 */
/***********************/
void Partition::Output(int n_c, int r)
{
int i1, k = 0, n;
char *now;
time_t aclock;
FILE *out;
if (out_m <= 0) {
out = stdout;
fprintf(out, "距離 %d\n", r);
getchar();
}
else {
time(&aclock);
now = ctime(&aclock);
out = fopen(o_file, "a");
if (n_c > 0) {
printf("距離 %d\n", r);
fprintf(out, " 距離 %d 時間 %s\n", r, now);
}
else
fprintf(out, "問題 %s 乱数 %ld 分割 %d %d 時間 %s",
i_file, seed, n_p_x, n_p_y, now);
}
if (n_c > 0 && (out_m == 0 || out_m == 1)) {
for (i1 = 0; i1 < n_c; i1++) {
n = seq_w1[i1];
if (seisu > 0)
fprintf(out, " %d %d %d\n", n, (int)city[n][0], (int)city[n][1]);
else
fprintf(out, " %d %f %f\n", n, city[n][0], city[n][1]);
if (out_m == 0) {
k++;
if (k == 10) {
getchar();
k = 0;
}
}
}
}
if (out_m > 0)
fclose(out);
}
/************************/
/* 分割された領域の接続 */
/************************/
int Partition::Connect()
{
double wd, wd1, wa1, wa2, min = 0;
int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r,
r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1;
/*
領域が1つの場合
*/
if (n_p_x == 1 && n_p_y == 1) {
for (i1 = 0; i1 < n_seq[0][0]; i1++)
seq_w1[i1] = seq[0][0][i1];
}
/*
初期設定
*/
else {
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++)
state[i1][i2] = (n_seq[i1][i2] > 0) ? 0 : 1;
}
/*
実行
*/
while (sw > 0) {
// 最小節点領域
min_c = n_city;
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) {
sw = 1;
r1 = i1;
r2 = i2;
min_c = n_seq[i1][i2];
}
}
}
// 結合する対象領域の決定
if (sw > 0) {
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) {
// 節点の数>2
if (n_seq[r1][r2] > 1) {
for (i3 = 0; i3 < n_seq[r1][r2]; i3++) {
k1 = seq[r1][r2][i3];
k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] :
seq[r1][r2][i3+1];
wd1 = rg[k1][k2];
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = wd1 + rg[k3][k4];
wa1 = rg[k1][k3] + rg[k2][k4];
wa2 = rg[k1][k4] + rg[k2][k3];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = -1;
}
if (sw == 0 || wa2-wd < min) {
min = wa2 - wd;
r3 = i1;
r4 = i2;
s1 = i3;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
}
// 節点の数=1
else {
k1 = seq[r1][r2][0];
if (n_seq[i1][i2] > 1) {
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = rg[k3][k4];
wa1 = rg[k1][k3] + rg[k1][k4];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
else {
k3 = seq[i1][i2][0];
wa1 = rg[k1][k3];
if (sw == 0 || wa1 < min) {
min = wa1;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = 0;
sw = 1;
}
}
}
}
}
}
// 領域の結合
seq_w1[0] = seq[r1][r2][s1];
k = 1;
n = s2;
for (i1 = 0; i1 < n_seq[r3][r4]; i1++) {
seq_w1[k] = seq[r3][r4][n];
k++;
n++;
if (n > n_seq[r3][r4]-1)
n = 0;
}
if (sw > 0) {
n = s1 + 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n > n_seq[r1][r2]-1)
n = 0;
seq_w1[k] = seq[r1][r2][n];
k++;
n++;
}
}
else {
n = s1 - 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n < 0)
n = n_seq[r1][r2] - 1;
seq_w1[k] = seq[r1][r2][n];
k++;
n--;
}
}
// 状態の変更
n_seq[r1][r2] += n_seq[r3][r4];
state[r3][r4] = 1;
for (i1 = 0; i1 < n_seq[r1][r2]; i1++)
seq[r1][r2][i1] = seq_w1[i1];
sw = 1;
}
}
}
r = (seisu > -2) ? (int)kyori(n_city, seq_w1, rg) :
(int)(kyori(n_city, seq_w1, rg) + 0.5);
Max = r;
return r;
}
/**********************************/
/* コンストラクタ */
/* n_city_i : 都市の数 */
/* max_try_i : 最大試行回数 */
/* sei_i : 整数 or 実数 */
/* sel_i : エッジの選択方法 */
/* neib_i : 近傍 */
/* fix_i : 近傍の扱い方 */
/* out_lvl_i : 出力レベル */
/* out_m_i : 出力方法 */
/* out_d_i : 表示間隔 */
/* o_file_i : 出力ファイル名 */
/* city_i : 都市の位置データ */
/**********************************/
Iteration::Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i, int fix_i,
int out_lvl_i, int out_m_i, int out_d_i, char *o_file_i, float **city_i)
{
double x, y;
int ct, i1, i2, sw;
// 値の設定
n_city = n_city_i;
max_try = max_tri_i;
seisu = sei_i;
sel = sel_i;
neib = neib_i;
fix = fix_i;
out_lvl = out_lvl_i;
out_m = out_m_i;
out_d = out_d_i;
strcpy(o_file, o_file_i);
// 都市の位置データ
city = new float * [n_city];
for (i1 = 0; i1 < n_city; i1++) {
city[i1] = new float [2];
city[i1][0] = city_i[i1][0];
city[i1][1] = city_i[i1][1];
}
// 距離テーブルの作成
rg = new float * [n_city];
for (i1 = 0; i1 < n_city; i1++) {
rg[i1] = new float [n_city];
for (i2 = i1+1; i2 < n_city; i2++) {
x = city[i2][0] - city[i1][0];
y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (i1 = 1; i1 < n_city; i1++) {
for (i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 都市を訪れる順序(初期設定)
seq = new int [n_city];
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
seq_w3 = new int [n_city];
seq_w4 = new int [n_city];
seq_w5 = new int [n_city];
for (i1 = 0; i1 < n_city; i1++) {
sw = 0;
while (sw == 0) {
ct = (int)(genrand_real3() * n_city);
if (ct >= n_city)
ct = n_city - 1;
seq[i1] = ct;
sw = 1;
for (i2 = 0; i2 < i1 && sw > 0; i2++) {
if (ct == seq[i2])
sw = 0;
}
}
}
}
/****************/
/* デストラクタ */
/****************/
Iteration::~Iteration ()
{
int i1;
if (n_city > 0) {
for (i1 = 0; i1 < n_city; i1++) {
delete [] city[i1];
delete [] rg[i1];
}
delete [] city;
delete [] rg;
delete[] seq;
delete [] seq_w1;
delete [] seq_w2;
delete [] seq_w3;
delete [] seq_w4;
delete [] seq_w5;
}
}
/****************/
/* 最適化の実行 */
/****************/
int Iteration::Optimize ()
{
double max;
int n_tri, sw;
// 初期設定
n_tri = 0;
max = kyori(n_city, seq, rg);
if (out_m >= 0 && abs(out_lvl) > 0) {
if (seisu > -2)
printf("***試行回数 %d 距離 %d\n", n_tri, (int)max);
else
printf("***試行回数 %d 距離 %f\n", n_tri, max);
Output(out_lvl, n_tri, max);
}
// 実行
sw = 1;
for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) {
// 改善
sw = Change(&max);
// 出力
if (out_d > 0 && n_tri%out_d == 0) {
if (seisu > -2)
printf("***試行回数 %d 距離 %d\n", n_tri, (int)max);
else
printf("***試行回数 %d 距離 %f\n", n_tri, max);
}
if (out_m >= 0 && abs(out_lvl) > 0) {
if (n_tri%abs(out_lvl) == 0)
Output(out_lvl, n_tri, max);
}
}
// 最終出力
if (out_m >= 0) {
n_tri--;
if (seisu > -2)
printf("***試行回数 %d 距離 %d\n", n_tri, (int)max);
else
printf("***試行回数 %d 距離 %f\n", n_tri, max);
Output(out_lvl, n_tri, max);
}
return n_tri;
}
/*******************************/
/* 出力 */
/* sw : >=0 : 出力先未定 */
/* < 0 : ファイル */
/* n_tri : 現在の試行回数 */
/* r : 距離 */
/*******************************/
void Iteration::Output(int sw, int n_tri, double r)
{
int i1, k = 0, n, pr;
char *now;
time_t aclock;
FILE *out;
if (sw >= 0) {
printf(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ");
scanf("%d", &pr);
}
else
pr = -1;
if (pr != 0) {
if (pr > 0) {
out = stdout;
getchar();
}
else {
time(&aclock);
now = ctime(&aclock);
out = fopen(o_file, "a");
if (seisu > -2)
fprintf(out, "***試行回数 %d 距離 %d 時間 %s\n", n_tri, (int)r, now);
else
fprintf(out, "***試行回数 %d 距離 %d 時間 %s\n", n_tri, (int)(r+0.5), now);
}
if (out_m == 0) {
for (i1 = 0; i1 < n_city; i1++) {
n = seq[i1];
if (seisu > 0)
fprintf(out, " %d %d %d\n", n, (int)city[n][0], (int)city[n][1]);
else
fprintf(out, " %d %f %f\n", n, city[n][0], city[n][1]);
if (pr > 0) {
k++;
if (k == pr) {
getchar();
k = 0;
}
}
}
}
if (pr <= 0)
fclose(out);
}
}
/**************************************/
/* エッジの入れ替え */
/* r_m : 距離 */
/* return : =0 : 改善がなかった */
/* =1 : 改善があった */
/**************************************/
int Iteration::Change(double *r_m)
{
double max, max1 = 0.0, r;
int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4,
n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2;
max = *r_m;
/*
近傍を可変
*/
if (fix == 0) {
// 初期設定(k=2)
k = 2;
for (i1 = 0; i1 < n_city; i1++) {
seq_w4[i1] = seq[i1];
seq_w3[i1] = 0;
}
// 評価
sw2 = 0;
for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) {
n = (i0 == 0) ? n_city-1 : n_city;
for (i1 = i0+2; i1 < n && sw2 < 2; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0+1])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[i0+1];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[i0];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
k1 = i0;
k2 = i0 + 1;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
if (sel > 0 && max1 < max)
sw2 = 2;
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[k1] = 1;
seq_w3[k2] = 1;
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
// 実行(k>2)
while (sw1 == 0) {
// 評価
sw2 = 0;
for (i1 = 0; i1 < n_city; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
if (seq_w3[k3] == 0 && seq_w3[k4] == 0) {
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k2])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[k2];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[k1];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k1]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
}
}
/*
近傍を固定
*/
else {
n3 = (int)(genrand_real3() * (n_city - 2));
if (n3 > n_city-3)
n3 = n_city - 3;
// 2近傍
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
if (n3 == 0)
n1 = n_city - 2;
else
n1 = n_city - 1;
for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) {
// 枝の場所((n3,n3+1), (k1,k2))
k1 = i2;
if (i2 == n_city-1)
k2 = 0;
else
k2 = i2 + 1;
// 枝の入れ替え
seq_w1[0] = seq[n3];
k = 1;
for (i3 = k1; i3 >= n3+1; i3--) {
seq_w1[k] = seq[i3];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
// 3近傍
if (neib == 3 && ch == 0) {
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
n1 = n_city - 2;
n2 = n_city - 1;
for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) {
for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) {
// 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3;
if (i3 == n_city-1)
k2 = 0;
else
k2 = i3 + 1;
// 枝の入れ替えと評価
// 入れ替え(その1)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その1)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その2)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その2)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その3)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その3)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その4)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その4)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
}
}
// 設定
if (sw > 0) {
*r_m = max;
for (i1 = 0; i1 < n_city; i1++)
seq[i1] = seq_w2[i1];
}
return sw;
}
/*********************************/
/* 距離の計算 */
/* n_c : 都市の数 */
/* p : 都市番号 */
/* rg : 都市間の距離 */
/* return : 距離 */
/*********************************/
float kyori(int n_c, int *p, float **rg)
{
float range = 0;
int i1, n1, n2;
n1 = p[0];
for (i1 = 1; i1 < n_c; i1++) {
n2 = p[i1];
range += rg[n1][n2];
n1 = n2;
}
n2 = p[0];
range += rg[n1][n2];
return range;
}
/****************/
/* main program */
/****************/
int main(int argc, char *argv[])
{
double mean;
int i0, i1, n, nm, max;
char i_file[100];
FILE *in, *out;
Partition *pt;
// 入力ミス
if (argc <= 1) {
printf("***error ファイル名を入力して下さい\n");
exit(1);
}
// 入力OK
else {
// ファイルのオープン
in = fopen(argv[1], "r");
if (in == NULL) {
printf("***error ファイル名が不適当です\n");
exit(1);
}
// 入力データファイル名と問題数
fscanf(in, "%*s %d", &nm);
for (i0 = 0; i0 < nm; i0++) {
// 各問題の実行
fscanf(in, "%*s %s %*s %d", i_file, &n);
pt = new Partition(i_file);
mean = 0.0;
max = -1;
// 乱数の初期値を変える
for (i1 = 0; i1 < n; i1++) {
// 問題
printf("\n+++++問題 %s +++++\n", i_file);
// 最適化
pt->Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値
// 最適値とその平均の計算
mean += pt->Max;
if (max < 0 || pt->Max < max)
max = pt->Max;
}
// 結果
if (pt->out_m <= 0)
printf(" -----最小 %d 平均 %f-----\n", max, mean/n);
else {
out = fopen(pt->o_file, "a");
fprintf(out, " -----最小 %d 平均 %f-----\n", max, mean/n);
fclose(out);
}
}
fclose(in);
}
return 0;
}
//------------------------ケーススタディデータ(data.txt)------
/*
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
*/
//---------------------データファイル(data1.txt)------------
/*
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
*/
//---------------------データファイル(data2.txt)------------
/*
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
*/
//---------------------MT.h---------------------------
// A C-program for MT19937, with initialization improved 2002/1/26.
// Coded by Takuji Nishimura and Makoto Matsumoto.
//
// Before using, initialize the state by using init_genrand(seed)
// or init_by_array(init_key, key_length).
//
// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. The names of its contributors may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//
// Any feedback is very welcome.
// http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
// email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
// The original version of http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c was modified by Takahiro Omi as
// - delete line 47 "#include<stdio.h>"
// - delete line 174 int main(void){...}
// - change N -> MT_N
// - change N -> MT_N
// - change the file name "mt19937ar.c" -> "MT.h"
/*
// Period parameters
#define MT_N 624
#define MT_M 397
#define MATRIX_A 0x9908b0dfUL // constant vector a
#define UPPER_MASK 0x80000000UL // most significant w-r bits
#define LOWER_MASK 0x7fffffffUL // least significant r bits
static unsigned long mt[MT_N]; // the array for the state vector
static int mti=MT_N+1; // mti==MT_N+1 means mt[MT_N] is not initialized
// initializes mt[MT_N] with a seed
void init_genrand(unsigned long s)
{
mt[0]= s & 0xffffffffUL;
for (mti=1; mti<MT_N; mti++) {
mt[mti] =
(1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
// See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier.
// In the previous versions, MSBs of the seed affect
// only MSBs of the array mt[].
// 2002/01/09 modified by Makoto Matsumoto
mt[mti] &= 0xffffffffUL;
// for >32 bit machines
}
}
// initialize by an array with array-length
// init_key is the array for initializing keys
// key_length is its length
// slight change for C++, 2004/2/26
void init_by_array(unsigned long init_key[], int key_length)
{
int i, j, k;
init_genrand(19650218UL);
i=1; j=0;
k = (MT_N>key_length ? MT_N : key_length);
for (; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
+ init_key[j] + j; // non linear
mt[i] &= 0xffffffffUL; // for WORDSIZE > 32 machines
i++; j++;
if (i>=MT_N) { mt[0] = mt[MT_N-1]; i=1; }
if (j>=key_length) j=0;
}
for (k=MT_N-1; k; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
- i; // non linear
mt[i] &= 0xffffffffUL; // for WORDSIZE > 32 machines
i++;
if (i>=MT_N) { mt[0] = mt[MT_N-1]; i=1; }
}
mt[0] = 0x80000000UL; // MSB is 1; assuring non-zero initial array
}
// generates a random number on [0,0xffffffff]-interval
unsigned long genrand_int32(void)
{
unsigned long y;
static unsigned long mag01[2]={0x0UL, MATRIX_A};
// mag01[x] = x * MATRIX_A for x=0,1
if (mti >= MT_N) { // generate N words at one time
int kk;
if (mti == MT_N+1) // if init_genrand() has not been called,
init_genrand(5489UL); // a default initial seed is used
for (kk=0;kk<MT_N-MT_M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
for (;kk<MT_N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
}
y = (mt[MT_N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
mti = 0;
}
y = mt[mti++];
// Tempering
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
// generates a random number on [0,0x7fffffff]-interval
long genrand_int31(void)
{
return (long)(genrand_int32()>>1);
}
// generates a random number on [0,1]-real-interval
double genrand_real1(void)
{
return genrand_int32()*(1.0/4294967295.0);
// divided by 2^32-1
}
// generates a random number on [0,1)-real-interval
double genrand_real2(void)
{
return genrand_int32()*(1.0/4294967296.0);
// divided by 2^32
}
// generates a random number on (0,1)-real-interval
double genrand_real3(void)
{
return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
// divided by 2^32
}
// generates a random number on [0,1) with 53-bit resolution
double genrand_res53(void)
{
unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
return(a*67108864.0+b)*(1.0/9007199254740992.0);
}
// These real versions are due to Isaku Wada, 2002/01/09 added
*/
/****************************/
/* 巡回セールスマン問題 */
/* (分割法) */
/* coded by Y.Suganuma */
/****************************/
import java.io.*;
import java.util.Random;
import java.util.Date;
import java.util.StringTokenizer;
import java.awt.*;
import java.awt.event.*;
/*************************/
/* クラスPartitionの定義 */
/*************************/
class Partition {
private float [][] rg; // 都市間の距離
private float [] p_x; // x軸の分割点
private float [] p_y; // y軸の分割点
private int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
private int max_try; // 最大試行回数
private int [] seq_w1; // 作業領域
private int [] seq_w2; // 作業領域
private int neib; // 近傍(2 or 3)
int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
private int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
private String i_file; // 入力ファイル名
private Win_pt wn; // Win_itオブジェクト
private Random rn; // 乱数
float [][] city; //都市の位置データ
float [][] city_i; //都市の位置データ(作業領域)
int Max; // 最適経路の長さ
int n_city; // 都市の数
int [][] n_seq; // 各領域の都市数
int [][] n_seq1; // 各領域の都市数(ワーク)
int n_p_x; // x軸方向の分割数
int n_p_y; // y軸方向の分割数
int out_m; // 出力方法
// =-1 : ディスプレイ(経路長だけ)
// =0 : ディスプレイ
// =1 : ファイル
// =2 : ファイル(経路長だけ)
int range; // 現在の評価値
int seed; // 乱数の初期値
int [][][] seq; // 経路
int [][][] seq1; // 経路(ワーク)
int [][] state; // 領域結合用ワーク
int display; // 画面表示
// =0 : 画面表示を行わない
// =1 : 結果だけを表示
// =2 : 初期状態と結果を表示
// =3 : 1領域の最適化終了毎に表示
String o_file; // 出力ファイル名
/**************************/
/* コンストラクタ */
/* name : ファイル名 */
/**************************/
Partition(String name) throws IOException, FileNotFoundException
{
double x, y;
float max_x, max_y, min_x, min_y, s_x, s_y;
int i1, i2, i3, max = 0, n;
String line;
StringTokenizer dt;
BufferedReader in = new BufferedReader(new FileReader(name));
// 基本データ
i_file = name;
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
n_city = Integer.parseInt(dt.nextToken());
dt.nextToken();
sel = Integer.parseInt(dt.nextToken());
dt.nextToken();
neib = Integer.parseInt(dt.nextToken());
dt.nextToken();
seisu = Integer.parseInt(dt.nextToken());
if (neib < 0) {
neib = -neib;
fix = 0;
}
else
fix = 1;
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
out_m = Integer.parseInt(dt.nextToken());
dt.nextToken();
o_file = dt.nextToken();
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
dt.nextToken();
n_p_x = Integer.parseInt(dt.nextToken());
dt.nextToken();
n_p_y = Integer.parseInt(dt.nextToken());
dt.nextToken();
max_try = Integer.parseInt(dt.nextToken());
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
display = Integer.parseInt(dt.nextToken());
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
int font = Integer.parseInt(dt.nextToken());
dt.nextToken();
int width = Integer.parseInt(dt.nextToken());
int height = Integer.parseInt(dt.nextToken());
// 都市の位置データ
city = new float [n_city][2];
for (i1 = 0; i1 < n_city; i1++) {
line = in.readLine();
dt = new StringTokenizer(line, " ");
city[i1][0] = Float.parseFloat(dt.nextToken());
city[i1][1] = Float.parseFloat(dt.nextToken());
}
// ファイルのクローズ
in.close();
// 距離テーブルの作成
rg = new float [n_city][n_city];
for (i1 = 0; i1 < n_city; i1++) {
for (i2 = i1+1; i2 < n_city; i2++) {
x = city[i2][0] - city[i1][0];
y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)Math.sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (i1 = 1; i1 < n_city; i1++) {
for (i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 作業領域
state = new int [n_p_y][n_p_x];
n_seq = new int [n_p_y][n_p_x];
n_seq1 = new int [n_p_y][n_p_x];
seq = new int [n_p_y][n_p_x][n_city];
seq1 = new int [n_p_y][n_p_x][n_city];
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
p_x = new float [n_p_x];
p_y = new float [n_p_y];
// 都市の分割
for (i1 = 0; i1 < n_city; i1++)
seq_w1[i1] = 0;
min_x = city[0][0];
max_x = city[0][0];
min_y = city[0][1];
max_y = city[0][1];
for (i1 = 1; i1 < n_city; i1++) {
if (city[i1][0] < min_x)
min_x = city[i1][0];
else {
if (city[i1][0] > max_x)
max_x = city[i1][0];
}
if (city[i1][1] < min_y)
min_y = city[i1][1];
else {
if (city[i1][1] > max_y)
max_y = city[i1][1];
}
}
s_x = (max_x - min_x) / n_p_x;
p_x[0] = min_x + s_x;
p_x[n_p_x-1] = max_x;
for (i1 = 1; i1 < n_p_x-1; i1++)
p_x[i1] = p_x[0] + i1 * s_x;
s_y = (max_y - min_y) / n_p_y;
p_y[0] = min_y + s_y;
p_y[n_p_y-1] = max_y;
for (i1 = 1; i1 < n_p_y-1; i1++)
p_y[i1] = p_y[0] + i1 * s_y;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
n = 0;
for (i3 = 0; i3 < n_city; i3++) {
if (seq_w1[i3] == 0) {
if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) {
seq_w1[i3] = 1;
seq_w2[n] = i3;
n++;
}
}
}
n_seq1[i1][i2] = n;
if (n > 0) {
for (i3 = 0; i3 < n; i3++)
seq1[i1][i2][i3] = seq_w2[i3];
if (n > max)
max = n;
}
}
}
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++)
state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1;
}
// 作業領域
System.out.println("最大都市数 " + max);
city_i = new float [max][2];
// Windowの生成
if (display > 0)
wn = new Win_pt (this, font, width, height);
}
/******************************/
/* 最適化の実行 */
/* seed_i : 乱数の初期値 */
/******************************/
void Optimize(int seed_i) throws IOException, FileNotFoundException
{
int i1, i2, i3, k, max, nb, r;
Iteration it;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
// 乱数の初期設定
seed = seed_i;
rn = new Random (seed);
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
n_seq[i1][i2] = n_seq1[i1][i2];
state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1;
for (i3 = 0; i3 < n_seq1[i1][i2]; i3++)
seq[i1][i2][i3] = seq1[i1][i2][i3];
}
}
// 初期状態の出力(図)
if (display >= 2) {
wn.Draw(0, -1, -1);
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
// 分割数と開始時間の出力(ファイルへ出力する場合)
if (out_m > 0)
Output(0);
// 分割毎の最適化
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (n_seq[i1][i2] > 3) {
// 近傍の大きさ
nb = (n_seq[i1][i2] > 3) ? neib : 2;
// 都市位置データの設定
for (i3 = 0; i3 < n_seq[i1][i2]; i3++) {
k = seq[i1][i2][i3];
city_i[i3][0] = city[k][0];
city_i[i3][1] = city[k][1];
}
// 最適化
it = new Iteration (n_seq[i1][i2], max_try, seisu, sel, nb, fix,
0, -1, 0, o_file, city_i, 0, rn);
max = it.Optimize();
// 結果の保存
for (i3 = 0; i3 < n_seq[i1][i2]; i3++) {
k = it.seq[i3];
seq_w1[i3] = seq[i1][i2][k];
}
for (i3 = 0; i3 < n_seq[i1][i2]; i3++)
seq[i1][i2][i3] = seq_w1[i3];
// 出力(文字)
r = (seisu > -2) ? (int)Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) :
(int)(Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5);
System.out.print(" y " + (i1+1) + " x " + (i2+1) +
" n_city " + n_seq[i1][i2] +
" range " + r + " (trial " + max + ")\n");
// 区分毎最適化結果の出力(図)
if (display == 3) {
wn.Draw(0, i1, i2);
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
}
}
}
// 経路の接続
range = Connect();
Max = range;
// 出力(図)
if (display > 0) {
wn.Draw(1, -1, -1);
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
// 出力(文字)
Output(n_city);
}
/***********************/
/* 出力 */
/* n_c : 都市の数 */
/***********************/
void Output(int n_c) throws IOException, FileNotFoundException
{
int i1, k = 0, n;
String now;
PrintStream out = null;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
if (out_m <= 0) {
out = System.out;
out.println("距離 " + range);
in.readLine();
}
else {
Date newtime = new Date(); // 現在時刻の獲得
now = newtime.toString(); // 文字列への変換
out = new PrintStream(new FileOutputStream(o_file, true));
if (n_c > 0) {
System.out.println("距離 " + range);
out.println(" 距離 " + range + " 時間 " + now);
}
else
out.println("問題 " + i_file + " 乱数 " + seed + " 分割 " + n_p_x +
" " + n_p_y + " 時間 " + now);
}
if (n_c > 0 && (out_m == 0 || out_m == 1)) {
for (i1 = 0; i1 < n_c; i1++) {
n = seq_w1[i1];
if (seisu > 0)
out.println(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
out.println(" " + n + " " + city[n][0] + " " + city[n][1]);
if (out_m == 0) {
k++;
if (k == 10) {
in.readLine();
k = 0;
}
}
}
}
if (out_m > 0)
out.close();
}
/************************/
/* 分割された領域の接続 */
/************************/
int Connect() throws IOException
{
double wd, wd1, wa1, wa2, min = 0;
int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r,
r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
/*
領域が1つの場合
*/
if (n_p_x == 1 && n_p_y == 1) {
for (i1 = 0; i1 < n_seq[0][0]; i1++)
seq_w1[i1] = seq[0][0][i1];
}
/*
領域が複数の場合
*/
else {
while (sw > 0) {
// 最小節点領域
min_c = n_city;
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) {
sw = 1;
r1 = i1;
r2 = i2;
min_c = n_seq[i1][i2];
}
}
}
// 結合する対象領域の決定
if (sw > 0) {
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) {
// 節点の数>2
if (n_seq[r1][r2] > 1) {
for (i3 = 0; i3 < n_seq[r1][r2]; i3++) {
k1 = seq[r1][r2][i3];
k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] :
seq[r1][r2][i3+1];
wd1 = rg[k1][k2];
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = wd1 + rg[k3][k4];
wa1 = rg[k1][k3] + rg[k2][k4];
wa2 = rg[k1][k4] + rg[k2][k3];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = -1;
}
if (sw == 0 || wa2-wd < min) {
min = wa2 - wd;
r3 = i1;
r4 = i2;
s1 = i3;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
}
// 節点の数=1
else {
k1 = seq[r1][r2][0];
if (n_seq[i1][i2] > 1) {
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = rg[k3][k4];
wa1 = rg[k1][k3] + rg[k1][k4];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
else {
k3 = seq[i1][i2][0];
wa1 = rg[k1][k3];
if (sw == 0 || wa1 < min) {
min = wa1;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = 0;
sw = 1;
}
}
}
}
}
}
// 領域の結合
seq_w1[0] = seq[r1][r2][s1];
k = 1;
n = s2;
for (i1 = 0; i1 < n_seq[r3][r4]; i1++) {
seq_w1[k] = seq[r3][r4][n];
k++;
n++;
if (n > n_seq[r3][r4]-1)
n = 0;
}
if (sw > 0) {
n = s1 + 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n > n_seq[r1][r2]-1)
n = 0;
seq_w1[k] = seq[r1][r2][n];
k++;
n++;
}
}
else {
n = s1 - 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n < 0)
n = n_seq[r1][r2] - 1;
seq_w1[k] = seq[r1][r2][n];
k++;
n--;
}
}
// 状態の変更
n_seq[r1][r2] += n_seq[r3][r4];
state[r3][r4] = 1;
for (i1 = 0; i1 < n_seq[r1][r2]; i1++)
seq[r1][r2][i1] = seq_w1[i1];
sw = 1;
// 結果の図示
if (display == 3) {
wn.Draw(0, r1, r2);
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
}
}
}
r = (seisu > -2) ? (int)Iteration.kyori(n_city, seq_w1, rg) :
(int)(Iteration.kyori(n_city, seq_w1, rg) + 0.5);
return r;
}
}
/*************************/
/* クラスIterationの定義 */
/*************************/
class Iteration {
private float [][] rg; // 都市間の距離
private int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
private int max_try; // 最大試行回数
private int neib; // 近傍(2 or 3)
private int out_d; // 表示間隔
private int [] seq_w1; // 都市を訪れる順序(ワーク)
private int [] seq_w2; // 都市を訪れる順序(ワーク)
private int [] seq_w3; // 都市を訪れる順序(ワーク)
private int [] seq_w4; // 都市を訪れる順序(ワーク)
private int [] seq_w5; // 都市を訪れる順序(ワーク)
private int out_lvl; // 出力レベル
// =0 : 最終出力だけ
// n>0 : n世代毎に出力(負の時はファイル)
private int out_m; // 出力方法
// =-1 : 出力しない
// =0 : すべてを出力
// =1 : 評価値だけを出力(最終結果だけはすべてを出力)
int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
private int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
private String o_file; // 出力ファイル名
private Win_it wn; // Win_itオブジェクト
private Random rn; // 乱数
double range; // 現在の評価値
float [][] city; //都市の位置データ
int n_city; // 都市の数
int n_tri; // 試行回数
int [] seq; // 都市を訪れる順序
int n_eg; // 交換した枝の数
int [] eg; // 交換した枝
int display; // 画面表示
// =0 : 画面表示を行わない
// =1 : 結果だけを表示
// =2 : 初期状態と結果を表示
// =3 : ワンステップ毎表示
/**********************************/
/* コンストラクタ */
/* n_city_i : 都市の数 */
/* max_try_i : 最大試行回数 */
/* sei_i : 整数 or 実数 */
/* sel_i : エッジの選択方法 */
/* neib_i : 近傍(2 or 3) */
/* fix_i : 近傍の扱い方 */
/* out_lvl_i : 出力レベル */
/* out_m_i : 出力方法 */
/* out_d_i : 表示間隔 */
/* o_file_i : 出力ファイル名 */
/* city_i : 都市の位置データ */
/* display_i : 画面表示 */
/* rn_i : 乱数 */
/**********************************/
Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i,
int fix_i, int out_lvl_i, int out_m_i, int out_d_i, String o_file_i,
float [][] city_i, int display_i, Random rn_i)
{
double x, y;
int ct, i1, i2, sw;
// 値の設定
n_city = n_city_i;
max_try = max_tri_i;
seisu = sei_i;
sel = sel_i;
neib = neib_i;
fix = fix_i;
out_lvl = out_lvl_i;
out_m = out_m_i;
out_d = out_d_i;
o_file = o_file_i;
display = display_i;
rn = rn_i;
n_tri = 0;
n_eg = 0;
eg = new int [6];
// 都市の位置データ
city = new float [n_city][2];
for (i1 = 0; i1 < n_city; i1++) {
city[i1][0] = city_i[i1][0];
city[i1][1] = city_i[i1][1];
}
// 距離テーブルの作成
rg = new float [n_city][n_city];
for (i1 = 0; i1 < n_city; i1++) {
for (i2 = i1+1; i2 < n_city; i2++) {
x = city[i2][0] - city[i1][0];
y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)Math.sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (i1 = 1; i1 < n_city; i1++) {
for (i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 都市を訪れる順序(初期設定)
seq = new int [n_city];
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
seq_w3 = new int [n_city];
seq_w4 = new int [n_city];
seq_w5 = new int [n_city];
for (i1 = 0; i1 < n_city; i1++) {
sw = 0;
while (sw == 0) {
ct = (int)(rn.nextDouble() * n_city);
if (ct >= n_city)
ct = n_city - 1;
seq[i1] = ct;
sw = 1;
for (i2 = 0; i2 < i1 && sw > 0; i2++) {
if (ct == seq[i2])
sw = 0;
}
}
}
}
/****************/
/* 最適化の実行 */
/****************/
int Optimize () throws IOException, FileNotFoundException
{
int sw;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
// ワンステップづつ実行しない場合
if (display < 3) {
// 初期設定
range = kyori(n_city, seq, rg);
// 初期状態の出力(図)
if (display == 2) {
wn.Draw();
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
// 初期状態の出力(文字)
if (out_m >= 0 && Math.abs(out_lvl) > 0) {
if (seisu > -2)
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range);
else
System.out.println("***試行回数 " + n_tri + " 距離 " + range);
Output(out_lvl);
}
// 実行
sw = 1;
for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) {
// 改善
sw = Change();
// 出力(文字)
if (out_d > 0 && n_tri%out_d == 0) {
if (seisu > -2)
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range);
else
System.out.println("***試行回数 " + n_tri + " 距離 " + range);
}
if (out_m >= 0 && Math.abs(out_lvl) > 0) {
if (n_tri%Math.abs(out_lvl) == 0)
Output(out_lvl);
}
}
// 最終出力(図)
if (display == 1 || display == 2) {
wn.Draw();
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
}
// 最終出力(文字)
if (out_m >= 0) {
n_tri--;
if (seisu > -2)
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range);
else
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5));
Output(out_lvl);
}
}
// ワンステップづつ実行する場合
else {
// 初期設定
range = kyori(n_city, seq, rg);
// 初期状態の出力(図)
wn.Draw();
System.out.println(" 図を確認したらreturnキーを押してください");
in.readLine();
// 初期状態の出力(文字)
if (out_m >= 0 && Math.abs(out_lvl) > 0) {
if (seisu > -2)
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range);
else
System.out.println("***試行回数 " + n_tri + " 距離 " + range);
Output(out_lvl);
}
// マウスによる実行
System.out.print("\n終了したらreturnキーを押してください\n");
in.readLine();
// 最終出力(文字)
if (out_m >= 0) {
if (seisu > -2)
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)range);
else
System.out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5));
Output(out_lvl);
}
}
return n_tri;
}
/*******************************/
/* 出力 */
/* sw : >= 0 : 出力先未定 */
/* < 0 : ファイル */
/*******************************/
void Output(int sw) throws IOException, FileNotFoundException
{
int i1, k = 0, n, pr;
String now;
PrintStream out = null;
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
if (sw >= 0) {
System.out.print(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ");
pr = Integer.parseInt(in.readLine());
}
else
pr = -1;
if (pr != 0) {
if (pr > 0)
out = System.out;
else {
Date newtime = new Date(); // 現在時刻の獲得
now = newtime.toString(); // 文字列への変換
out = new PrintStream(new FileOutputStream(o_file, true));
if (seisu > -2)
out.println("***試行回数 " + n_tri + " 距離 " + (int)range + " 時間 " + now);
else
out.println("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5) +
" 時間 " + now);
}
if (out_m == 0) {
for (i1 = 0; i1 < n_city; i1++) {
n = seq[i1];
if (seisu > 0)
out.println(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
out.println(" " + n + " " + city[n][0] + " " + city[n][1]);
if (pr > 0) {
k++;
if (k == pr) {
in.readLine();
k = 0;
}
}
}
}
if (pr <= 0)
out.close();
}
}
/**************************************/
/* エッジの入れ替え */
/* return : =0 : 改善がなかった */
/* =1 : 改善があった */
/**************************************/
int Change()
{
double max, max1 = 0.0, r;
int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4,
n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2;
max = range;
/*
近傍を可変
*/
if (fix == 0) {
// 初期設定(k=2)
k = 2;
for (i1 = 0; i1 < n_city; i1++) {
seq_w4[i1] = seq[i1];
seq_w3[i1] = 0;
}
// 評価
sw2 = 0;
for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) {
n = (i0 == 0) ? n_city-1 : n_city;
for (i1 = i0+2; i1 < n && sw2 < 2; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0+1])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[i0+1];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[i0];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
k1 = i0;
k2 = i0 + 1;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
if (sel > 0 && max1 < max)
sw2 = 2;
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[k1] = 1;
seq_w3[k2] = 1;
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
// 実行(k>2)
while (sw1 == 0) {
// 評価
sw2 = 0;
for (i1 = 0; i1 < n_city; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
if (seq_w3[k3] == 0 && seq_w3[k4] == 0) {
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k2])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[k2];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[k1];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k1]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
}
}
/*
近傍を固定
*/
else {
n3 = (int)(rn.nextDouble() * (n_city - 2));
if (n3 > n_city-3)
n3 = n_city - 3;
// 2近傍
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
if (n3 == 0)
n1 = n_city - 2;
else
n1 = n_city - 1;
for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) {
// 枝の場所((n3,n3+1), (k1,k2))
k1 = i2;
if (i2 == n_city-1)
k2 = 0;
else
k2 = i2 + 1;
// 枝の入れ替え
seq_w1[0] = seq[n3];
k = 1;
for (i3 = k1; i3 >= n3+1; i3--) {
seq_w1[k] = seq[i3];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
n_eg = 2;
eg[0] = seq[n3];
eg[1] = seq[n3+1];
eg[2] = seq[k1];
eg[3] = seq[k2];
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
// 3近傍
if (neib == 3 && ch == 0) {
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
n1 = n_city - 2;
n2 = n_city - 1;
for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) {
for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) {
// 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3;
if (i3 == n_city-1)
k2 = 0;
else
k2 = i3 + 1;
// 枝の入れ替えと評価
// 入れ替え(その1)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その1)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
n_eg = 3;
eg[0] = seq[n3];
eg[1] = seq[n3+1];
eg[2] = seq[i2];
eg[3] = seq[i2+1];
eg[4] = seq[k1];
eg[5] = seq[k2];
}
// 入れ替え(その2)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その2)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
n_eg = 3;
eg[0] = seq[n3];
eg[1] = seq[n3+1];
eg[2] = seq[i2];
eg[3] = seq[i2+1];
eg[4] = seq[k1];
eg[5] = seq[k2];
}
// 入れ替え(その3)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その3)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
n_eg = 3;
eg[0] = seq[n3];
eg[1] = seq[n3+1];
eg[2] = seq[i2];
eg[3] = seq[i2+1];
eg[4] = seq[k1];
eg[5] = seq[k2];
}
// 入れ替え(その4)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その4)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
n_eg = 3;
eg[0] = seq[n3];
eg[1] = seq[n3+1];
eg[2] = seq[i2];
eg[3] = seq[i2+1];
eg[4] = seq[k1];
eg[5] = seq[k2];
}
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
}
}
// 設定
if (sw > 0) {
range = max;
for (i1 = 0; i1 < n_city; i1++)
seq[i1] = seq_w2[i1];
}
return sw;
}
/*********************************/
/* 距離の計算 */
/* n_c : 都市の数 */
/* p : 都市番号 */
/* rg : 都市間の距離 */
/* return : 距離 */
/*********************************/
static float kyori(int n_c, int [] p, float [][] rg)
{
float range = 0;
int i1, n1, n2;
n1 = p[0];
for (i1 = 1; i1 < n_c; i1++) {
n2 = p[i1];
range += rg[n1][n2];
n1 = n2;
}
n2 = p[0];
range += rg[n1][n2];
return range;
}
}
/**********************/
/* クラスWin_ptの定義 */
/**********************/
class Win_pt extends Frame {
double ritu; // 表示倍率
private float min_x, max_x, min_y, max_y; // 都市の存在範囲
private int font; // フォントサイズ
private int next, yoyu_x, yoyu_y; // 表示位置
private int r_sw; // 距離表示の有無
private int c_x, c_y; // 現在の対象領域
private Partition pt;
/*************************************/
/* コンストラクタ */
/* pt : Partitionのオブジェクト */
/* city_i : 都市の位置データ */
/* font_i : フォントサイズ */
/* width,height : 表示範囲 */
/*************************************/
Win_pt (Partition pt_i, int font_i, int width, int height)
{
// Frameクラスのコンストラクタの呼び出し
super("巡回セールスマン問題");
// 値の設定と領域の確保
double k1, k2;
int i1;
pt = pt_i;
font = font_i;
next = 70;
yoyu_x = 30;
yoyu_y = 80;
// 描画領域の計算
min_x = pt.city[0][0];
max_x = pt.city[0][0];
min_y = pt.city[0][1];
max_y = pt.city[0][1];
for (i1 = 1; i1 < pt.n_city; i1++) {
if (pt.city[i1][0] < min_x)
min_x = pt.city[i1][0];
else {
if (pt.city[i1][0] > max_x)
max_x = pt.city[i1][0];
}
if (pt.city[i1][1] < min_y)
min_y = pt.city[i1][1];
else {
if (pt.city[i1][1] > max_y)
max_y = pt.city[i1][1];
}
}
k1 = (double)(width - 2 * yoyu_x) / (max_x - min_x);
if (pt.display == 3)
k2 = (double)(height - yoyu_y - next) / (max_y - min_y);
else
k2 = (double)(height - yoyu_y - yoyu_x) / (max_y - min_y);
ritu = (k1 < k2) ? k1 : k2;
// Windowサイズ
width = 2 * yoyu_x + (int)(ritu * (max_x - min_x));
height = yoyu_y + yoyu_x + (int)(ritu * (max_y - min_y));
setSize(width, height);
// ウィンドウを表示
setVisible(true);
// イベントアダプタ
addWindowListener(new WinEnd());
}
/********************************/
/* 描画指示 */
/* sw : 距離表示の有無 */
/* c_y_i, c_x_i : 対象領域 */
/********************************/
void Draw(int sw, int c_y_i, int c_x_i)
{
r_sw = sw;
c_y = c_y_i;
c_x = c_x_i;
repaint();
}
/********/
/* 描画 */
/********/
public void paint (Graphics g)
{
int i1, i2, i3, k, n1, n2, size = 6, x1, x2, y1, y2;
Font f;
// 距離の表示
if (r_sw > 0) {
f = new Font("TimesRoman", Font.BOLD, 25);
g.setFont(f);
if (pt.seisu > -2)
g.drawString("Length : "+Integer.toString((int)pt.range), yoyu_x, yoyu_y-30);
else
g.drawString("Length : "+Integer.toString((int)(pt.range+0.5)), yoyu_x, yoyu_y-30);
}
// 都市番号のフォントサイズ
if (font > 0) {
f = new Font("TimesRoman", Font.PLAIN, font);
g.setFont(f);
}
// 点と直線のプロット
k = size / 2;
for (i1 = 0; i1 < pt.n_p_y; i1++) {
for (i2 = 0; i2 < pt.n_p_x; i2++) {
if (pt.state[i1][i2] == 0) {
if (i1 == c_y && i2 == c_x)
g.setColor(Color.red);
else
g.setColor(Color.black);
for (i3 = 0; i3 < pt.n_seq[i1][i2]; i3++) {
n2 = pt.seq[i1][i2][i3];
x2 = yoyu_x + (int)(ritu * (pt.city[n2][0] - min_x));
y2 = yoyu_y + (int)(ritu * (max_y - pt.city[n2][1]));
g.fillOval(x2, y2, size, size);
if (font > 0)
g.drawString(Integer.toString(n2), x2+k, y2-k);
if (i3 > 0) {
n1 = pt.seq[i1][i2][i3-1];
x1 = yoyu_x + (int)(ritu * (pt.city[n1][0] - min_x));
y1 = yoyu_y + (int)(ritu * (max_y - pt.city[n1][1]));
g.drawLine(x1+k, y1+k, x2+k, y2+k);
if (i3 == pt.n_seq[i1][i2]-1) {
n1 = pt.seq[i1][i2][0];
x1 = yoyu_x + (int)(ritu * (pt.city[n1][0] - min_x));
y1 = yoyu_y + (int)(ritu * (max_y - pt.city[n1][1]));
g.drawLine(x1+k, y1+k, x2+k, y2+k);
}
}
}
}
}
}
}
/************/
/* 終了処理 */
/************/
class WinEnd extends WindowAdapter
{
public void windowClosing(WindowEvent e) {
System.exit(0);
}
}
}
/**********************/
/* クラスWin_itの定義 */
/**********************/
class Win_it extends Frame {
double ritu; // 表示倍率
private float min_x, max_x, min_y, max_y; // 都市の存在範囲
private int font; // フォントサイズ
private int next, yoyu_x, yoyu_y; // 表示位置
private Iteration it;
/***************************************/
/* コンストラクタ */
/* it_i : Iterationのオブジェクト */
/* font_i : フォントサイズ */
/* width,height : 表示範囲 */
/***************************************/
Win_it (Iteration it_i, int font_i, int width, int height)
{
// Frameクラスのコンストラクタの呼び出し
super("巡回セールスマン問題");
// 値の設定と領域の確保
double k1, k2;
int i1;
it = it_i;
font = font_i;
next = 70;
yoyu_x = 30;
yoyu_y = 80;
// 描画領域の計算
min_x = it.city[0][0];
max_x = it.city[0][0];
min_y = it.city[0][1];
max_y = it.city[0][1];
for (i1 = 1; i1 < it.n_city; i1++) {
if (it.city[i1][0] < min_x)
min_x = it.city[i1][0];
else {
if (it.city[i1][0] > max_x)
max_x = it.city[i1][0];
}
if (it.city[i1][1] < min_y)
min_y = it.city[i1][1];
else {
if (it.city[i1][1] > max_y)
max_y = it.city[i1][1];
}
}
k1 = (double)(width - 2 * yoyu_x) / (max_x - min_x);
if (it.display == 3)
k2 = (double)(height - yoyu_y - next) / (max_y - min_y);
else
k2 = (double)(height - yoyu_y - yoyu_x) / (max_y - min_y);
ritu = (k1 < k2) ? k1 : k2;
// ボタンの設定とWindowサイズ
if (it.display == 3) {
// パネルクラスの定義
Panel pnl = new Panel();
// Next ボタンの設定
Button bt = new Button("Next");
bt.addMouseListener(new ClickMouse());
pnl.add(bt);
add("South", pnl);
// ウィンドウの構成要素をパック
pack();
// 指定された大きさにWindowサイズを変更
width = 2 * yoyu_x + (int)(ritu * (max_x - min_x));
height = yoyu_y + next + (int)(ritu * (max_y - min_y));
}
else {
// 指定された大きさにWindowサイズを変更
width = 2 * yoyu_x + (int)(ritu * (max_x - min_x));
height = yoyu_y + yoyu_x + (int)(ritu * (max_y - min_y));
}
setSize(width, height);
// ウィンドウを表示
setVisible(true);
// イベントアダプタ
addWindowListener(new WinEnd());
}
/************/
/* 描画指示 */
/************/
void Draw()
{
repaint();
}
/********/
/* 描画 */
/********/
public void paint (Graphics g)
{
int i1, k, n1, n2, size = 6, x1, x2, y1, y2;
Font f;
// 距離の表示
f = new Font("TimesRoman", Font.BOLD, 25);
g.setFont(f);
if (it.seisu > -2)
g.drawString("Length : "+Integer.toString((int)it.range), yoyu_x, yoyu_y-30);
else
g.drawString("Length : "+Integer.toString((int)(it.range+0.5)), yoyu_x, yoyu_y-30);
// 都市番号のフォントサイズ
if (font > 0) {
f = new Font("TimesRoman", Font.PLAIN, font);
g.setFont(f);
}
// 点と直線のプロット
k = size / 2;
for (i1 = 0; i1 < it.n_city; i1++) {
n2 = it.seq[i1];
x2 = yoyu_x + (int)(ritu * (it.city[n2][0] - min_x));
y2 = yoyu_y + (int)(ritu * (max_y - it.city[n2][1]));
g.fillOval(x2, y2, size, size);
if (font > 0)
g.drawString(Integer.toString(n2), x2+k, y2-k);
if (i1 > 0) {
n1 = it.seq[i1-1];
x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x));
y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1]));
g.drawLine(x1+k, y1+k, x2+k, y2+k);
if (i1 == it.n_city-1) {
n1 = it.seq[0];
x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x));
y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1]));
g.drawLine(x1+k, y1+k, x2+k, y2+k);
}
}
}
// 交換した元の枝を赤く描く
if (it.display == 3 && it.n_eg > 0) {
g.setColor(Color.red);
for (i1 = 0; i1 < it.n_eg; i1++ ) {
n1 = it.eg[2*i1];
x1 = yoyu_x + (int)(ritu * (it.city[n1][0] - min_x));
y1 = yoyu_y + (int)(ritu * (max_y - it.city[n1][1]));
n2 = it.eg[2*i1+1];
x2 = yoyu_x + (int)(ritu * (it.city[n2][0] - min_x));
y2 = yoyu_y + (int)(ritu * (max_y - it.city[n2][1]));
g.drawLine(x1+k, y1+k, x2+k, y2+k);
}
}
}
/**********************************/
/* nextボタンが押されたときの処理 */
/**********************************/
class ClickMouse extends MouseAdapter
{
/************************************/
/* マウスがクリックされたときの処理 */
/************************************/
public void mouseClicked(MouseEvent e)
{
int sw = it.Change();
if (sw > 0)
it.n_tri++;
else
it.n_eg = 0;
repaint();
}
}
/************/
/* 終了処理 */
/************/
class WinEnd extends WindowAdapter
{
public void windowClosing(WindowEvent e) {
System.exit(0);
}
}
}
public class Test {
/****************/
/* main program */
/****************/
public static void main(String args[]) throws IOException, FileNotFoundException
{
double mean;
int i0, i1, n, nm, max;
String i_file, line;
Partition pt;
StringTokenizer dt;
PrintStream out = null;
BufferedReader in = new BufferedReader(new FileReader(args[0]));
// 入力ミス
if (args.length == 0) {
System.out.print("***error ファイル名を入力して下さい\n");
System.exit(1);
}
// 入力OK
else {
// 入力データファイル名と問題数
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
nm = Integer.parseInt(dt.nextToken());
for (i0 = 0; i0 < nm; i0++) {
// 各問題の実行
line = in.readLine();
dt = new StringTokenizer(line, " ");
dt.nextToken();
i_file = dt.nextToken();
dt.nextToken();
n = Integer.parseInt(dt.nextToken());
pt = new Partition(i_file);
mean = 0.0;
max = -1;
// 乱数の初期値を変える
for (i1 = 0; i1 < n; i1++) {
System.out.println("\n+++++問題 " + i_file + "+++++");
// 最適化
pt.Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値
// 最適値とその平均の計算
mean += pt.Max;
if (max < 0 || pt.Max < max)
max = pt.Max;
}
// 結果
if (pt.out_m <= 0)
System.out.println(" -----最小 " + max + " 平均 " + mean/n + "-----");
else {
out = new PrintStream(new FileOutputStream(pt.o_file, true));
out.println(" -----最小 " + max + " 平均 " + mean/n + "-----");
out.close();
}
}
in.close();
}
}
}
//------------------------ケーススタディデータ(data_j.txt)------
/*
問題の数 2
問題 data1_j.txt 繰り返し回数 2
問題 data2_j.txt 繰り返し回数 1
*/
//---------------------データファイル(data1_j.txt)------------
/*
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
図示(0:しない,1:結果,2:初期状態と結果,3:ステップ) 3
都市番号 0 図の大きさ(幅,高さ) 1000 750
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
*/
//---------------------データファイル(data2_j.txt)------------
/*
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
図示(0:しない,1:結果,2:初期状態と結果,3:ステップ) 3
都市番号 0 図の大きさ(幅,高さ) 1000 750
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
*/
<?php
/****************************/
/* 巡回セールスマン問題 */
/* (分割法) */
/* coded by Y.Suganuma */
/****************************/
/*************************/
/* クラスPartitionの定義 */
/*************************/
class Partition {
private $city; //都市の位置データ
private $city_i; //都市の位置データ(作業領域)
private $p_x; // x軸の分割点
private $p_y; // y軸の分割点
private $rg; // 都市間の距離
private $seed; // 乱数の初期値
private $fix; // =1 : 近傍を固定
// =0 : 近傍を可変
private $max_try; // 最大試行回数
private $n_city; // 都市の数
private $n_seq; // 各領域の都市数
private $n_seq1; // 各領域の都市数(ワーク)
private $n_p_x; // x軸方向の分割数
private $n_p_y; // y軸方向の分割数
private $seq; // 経路
private $seq1; // 経路(ワーク)
private $seq_w1; // 作業領域
private $seq_w2; // 作業領域
private $neib; // 近傍(2 or 3)
private $seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
private $sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
private $state; // 領域結合用ワーク
private $i_file; // 入力ファイル名
public $Max; // 最適経路の長さ
public $out_m; // 出力方法
// =-1 : ディスプレイ(経路長だけ)
// =0 : ディスプレイ
// =1 : ファイル
// =2 : ファイル(経路長だけ)
public $o_file; // 出力ファイル名
/**************************/
/* コンストラクタ */
/* name : ファイル名 */
/**************************/
function Partition($name)
{
$max = 0;
// ファイルのオープン
$this->i_file = $name;
$in = fopen($name, "r");
if ($in == NULL)
exit("***error データファイル名が不適当\n");
// 基本データ
fscanf($in, "%*s %d %*s %d %*s %d %*s %d", $this->n_city, $this->sel, $this->neib, $this->seisu);
fscanf($in, "%*s %d %*s %s", $this->out_m, $this->o_file);
fscanf($in, "%*s %*s %d %*s %d %*s %d", $this->n_p_x, $this->n_p_y, $this->max_try);
if ($this->neib < 0) {
$this->neib = -$this->neib;
$this->fix = 0;
}
else
$this->fix = 1;
// 都市の位置データ
$this->city = array($this->n_city);
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$this->city[$i1] = array(2);
fscanf($in, "%f %f", $this->city[$i1][0], $this->city[$i1][1]);
}
// ファイルのクローズ
fclose($in);
// 距離テーブルの作成
$this->rg = array($this->n_city);
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$this->rg[$i1] = array($this->n_city);
for ($i2 = $i1+1; $i2 < $this->n_city; $i2++) {
$x = $this->city[$i2][0] - $this->city[$i1][0];
$y = $this->city[$i2][1] - $this->city[$i1][1];
$this->rg[$i1][$i2] = sqrt($x * $x + $y * $y);
if ($this->seisu > -2)
$this->rg[$i1][$i2] = round($this->rg[$i1][$i2]);
}
}
for ($i1 = 1; $i1 < $this->n_city; $i1++) {
for ($i2 = 0; $i2 < $i1; $i2++)
$this->rg[$i1][$i2] = $this->rg[$i2][$i1];
}
// 作業領域
$this->state = array($this->n_p_y);
$this->n_seq = array($this->n_p_y);
$this->n_seq1 = array($this->n_p_y);
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
$this->n_seq[$i1] = array($this->n_p_x);
$this->n_seq1[$i1] = array($this->n_p_x);
$this->state[$i1] = array($this->n_p_x);
}
$this->seq = array($this->n_p_y);
$this->seq1 = array($this->n_p_y);
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
$this->seq[$i1] = array($this->n_p_x);
$this->seq1[$i1] = array($this->n_p_x);
}
$this->seq_w1 = array($this->n_city);
$this->seq_w2 = array($this->n_city);
$this->p_x = array($this->n_p_x);
$this->p_y = array($this->n_p_y);
// 都市の分割
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq_w1[$i1] = 0;
$min_x = $this->city[0][0];
$max_x = $this->city[0][0];
$min_y = $this->city[0][1];
$max_y = $this->city[0][1];
for ($i1 = 1; $i1 < $this->n_city; $i1++) {
if ($this->city[$i1][0] < $min_x)
$min_x = $this->city[$i1][0];
else {
if ($this->city[$i1][0] > $max_x)
$max_x = $this->city[$i1][0];
}
if ($this->city[$i1][1] < $min_y)
$min_y = $this->city[$i1][1];
else {
if ($this->city[$i1][1] > $max_y)
$max_y = $this->city[$i1][1];
}
}
$s_x = ($max_x - $min_x) / $this->n_p_x;
$this->p_x[0] = $min_x + $s_x;
$this->p_x[$this->n_p_x-1] = $max_x;
for ($i1 = 1; $i1 < $this->n_p_x-1; $i1++)
$this->p_x[$i1] = $this->p_x[0] + $i1 * $s_x;
$s_y = ($max_y - $min_y) / $this->n_p_y;
$this->p_y[0] = $min_y + $s_y;
$this->p_y[$this->n_p_y-1] = $max_y;
for ($i1 = 1; $i1 < $this->n_p_y-1; $i1++)
$this->p_y[$i1] = $this->p_y[0] + $i1 * $s_y;
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++) {
$n = 0;
for ($i3 = 0; $i3 < $this->n_city; $i3++) {
if ($this->seq_w1[$i3] == 0) {
if ($this->city[$i3][0] <= $this->p_x[$i2] && $this->city[$i3][1] <= $this->p_y[$i1]) {
$this->seq_w1[$i3] = 1;
$this->seq_w2[$n] = $i3;
$n++;
}
}
}
$this->n_seq1[$i1][$i2] = $n;
if ($n > 0) {
$this->seq[$i1][$i2] = array($this->n_city);
$this->seq1[$i1][$i2] = array($this->n_city);
for ($i3 = 0; $i3 < $n; $i3++)
$this->seq1[$i1][$i2][$i3] = $this->seq_w2[$i3];
if ($n > $max)
$max = $n;
}
}
}
// 作業領域
printf("最大都市数 %d\n", $max);
$this->city_i = array($max);
for ($i1 = 0; $i1 < $max; $i1++)
$this->city_i[$i1] = array(2);
}
/******************************/
/* 最適化の実行 */
/* seed_i : 乱数の初期値 */
/******************************/
function Optimize($seed_i)
{
$r = 0;
// 初期設定
$this->seed = $seed_i;
mt_srand($seed_i);
// 分割数と開始時間の出力
if ($this->out_m > 0)
$this->Output(0, $r);
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++) {
$this->n_seq[$i1][$i2] = $this->n_seq1[$i1][$i2];
for ($i3 = 0; $i3 < $this->n_seq1[$i1][$i2]; $i3++)
$this->seq[$i1][$i2][$i3] = $this->seq1[$i1][$i2][$i3];
}
}
// 分割毎の最適化
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++) {
if ($this->n_seq[$i1][$i2] > 3) {
// 近傍の大きさ
$nb = ($this->n_seq[$i1][$i2] > 3) ? $this->neib : 2;
// 都市位置データの設定
for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++) {
$k = $this->seq[$i1][$i2][$i3];
$this->city_i[$i3][0] = $this->city[$k][0];
$this->city_i[$i3][1] = $this->city[$k][1];
}
// 最適化
$it = new Iteration ($this->n_seq[$i1][$i2], $this->max_try, $this->seisu, $this->sel, $nb, $this->fix, 0, -1, 0, $this->o_file, $this->city_i);
$max = $it->Optimize();
// 結果の保存
for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++) {
$k = $it->seq[$i3];
$this->seq_w1[$i3] = $this->seq[$i1][$i2][$k];
}
for ($i3 = 0; $i3 < $this->n_seq[$i1][$i2]; $i3++)
$this->seq[$i1][$i2][$i3] = $this->seq_w1[$i3];
// 出力
$r = ($this->seisu > -2) ? intval(kyori($this->n_seq[$i1][$i2], $this->seq[$i1][$i2], $this->rg)) : round((kyori($this->n_seq[$i1][$i2], $this->seq[$i1][$i2], $this->rg)));
printf(" y %d x %d $this->n_city %d range %d (trial %d)\n",
$i1+1, $i2+1, $this->n_seq[$i1][$i2], $r, $max);
}
}
}
// 経路の接続
$r = $this->Connect();
// 出力
$this->Output($this->n_city, $r);
}
/***********************/
/* 出力 */
/* n_c : 都市の数 */
/* r : 距離 */
/***********************/
function Output($n_c, $r)
{
$k = 0;
if ($this->out_m <= 0) {
$out = STDOUT;
fwrite($out, "距離 ".$r."\n");
fgets(STDIN);
}
else {
$x = getdate();
$now = $x["hours"]."時".$x["minutes"]."分".$x["seconds"]."秒";
$out = fopen($this->o_file, "ab");
if ($n_c > 0) {
printf("距離 %d\n", $r);
fwrite($out, " 距離 ".$r." 時間 ".$now."\n");
}
else
fwrite($out, "問題 ".$this->i_file." 乱数 ".$this->seed." 分割 ".$this->n_p_x." ".$this->n_p_y." 時間 ".$now."\n");
}
if ($n_c > 0 && ($this->out_m == 0 || $this->out_m == 1)) {
for ($i1 = 0; $i1 < $n_c; $i1++) {
$n = $this->seq_w1[$i1];
if ($this->seisu > 0)
fwrite($out, " ".$n." ".intval($this->city[$n][0])." ".intval($this->city[$n][1])."\n");
else
fwrite($out, " ".$n." ".$this->city[$n][0]." ".$this->city[$n][1]."\n");
if ($this->out_m == 0) {
$k++;
if ($k == 10) {
fgets(STDIN);
$k = 0;
}
}
}
}
if ($this->out_m > 0)
fclose($out);
}
/************************/
/* 分割された領域の接続 */
/************************/
function Connect()
{
$min = 0;
$k1 = 0;
$k2 = 0;
$k3 = 0;
$k4 = 0;
$min_c = 0;
$r1 = 0;
$r2 = 0;
$r3 = 0;
$r4 = 0;
$s1 = 0;
$s2 = 0;
$sw = 1;
/*
領域が1つの場合
*/
if ($this->n_p_x == 1 && $this->n_p_y == 1) {
for ($i1 = 0; $i1 < $this->n_seq[0][0]; $i1++)
$this->seq_w1[$i1] = $this->seq[0][0][$i1];
}
/*
初期設定
*/
else {
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++)
$this->state[$i1][$i2] = ($this->n_seq[$i1][$i2] > 0) ? 0 : 1;
}
/*
実行
*/
while ($sw > 0) {
// 最小節点領域
$min_c = $this->n_city;
$sw = 0;
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++) {
if ($this->state[$i1][$i2] == 0 && $this->n_seq[$i1][$i2] < $min_c) {
$sw = 1;
$r1 = $i1;
$r2 = $i2;
$min_c = $this->n_seq[$i1][$i2];
}
}
}
// 結合する対象領域の決定
if ($sw > 0) {
$sw = 0;
for ($i1 = 0; $i1 < $this->n_p_y; $i1++) {
for ($i2 = 0; $i2 < $this->n_p_x; $i2++) {
if ($this->state[$i1][$i2] == 0 && ($i1 != $r1 || $i2 != $r2)) {
// 節点の数>2
if ($this->n_seq[$r1][$r2] > 1) {
for ($i3 = 0; $i3 < $this->n_seq[$r1][$r2]; $i3++) {
$k1 = $this->seq[$r1][$r2][$i3];
$k2 = ($i3 == $this->n_seq[$r1][$r2]-1) ? $this->seq[$r1][$r2][0] : $this->seq[$r1][$r2][$i3+1];
$wd1 = $this->rg[$k1][$k2];
for ($i4 = 0; $i4 < $this->n_seq[$i1][$i2]; $i4++) {
$k3 = $this->seq[$i1][$i2][$i4];
$k4 = ($i4 == $this->n_seq[$i1][$i2]-1) ? $this->seq[$i1][$i2][0] : $this->seq[$i1][$i2][$i4+1];
$wd = $wd1 + $this->rg[$k3][$k4];
$wa1 = $this->rg[$k1][$k3] + $this->rg[$k2][$k4];
$wa2 = $this->rg[$k1][$k4] + $this->rg[$k2][$k3];
if ($sw == 0 || $wa1-$wd < $min) {
$min = $wa1 - $wd;
$r3 = $i1;
$r4 = $i2;
$s1 = ($i3 == $this->n_seq[$r1][$r2]-1) ? 0 : $i3 + 1;
$s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1;
$sw = -1;
}
if ($sw == 0 || $wa2-$wd < $min) {
$min = $wa2 - $wd;
$r3 = $i1;
$r4 = $i2;
$s1 = $i3;
$s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1;
$sw = 1;
}
}
}
}
// 節点の数=1
else {
$k1 = $this->seq[$r1][$r2][0];
if ($this->n_seq[$i1][$i2] > 1) {
for ($i4 = 0; $i4 < $this->n_seq[$i1][$i2]; $i4++) {
$k3 = $this->seq[$i1][$i2][$i4];
$k4 = ($i4 == $this->n_seq[$i1][$i2]-1) ? $this->seq[$i1][$i2][0] : $this->seq[$i1][$i2][$i4+1];
$wd = $this->rg[$k3][$k4];
$wa1 = $this->rg[$k1][$k3] + $this->rg[$k1][$k4];
if ($sw == 0 || $wa1-$wd < $min) {
$min = $wa1 - $wd;
$r3 = $i1;
$r4 = $i2;
$s1 = 0;
$s2 = ($i4 == $this->n_seq[$i1][$i2]-1) ? 0 : $i4 + 1;
$sw = 1;
}
}
}
else {
$k3 = $this->seq[$i1][$i2][0];
$wa1 = $this->rg[$k1][$k3];
if ($sw == 0 || $wa1 < $min) {
$min = $wa1;
$r3 = $i1;
$r4 = $i2;
$s1 = 0;
$s2 = 0;
$sw = 1;
}
}
}
}
}
}
// 領域の結合
$this->seq_w1[0] = $this->seq[$r1][$r2][$s1];
$k = 1;
$n = $s2;
for ($i1 = 0; $i1 < $this->n_seq[$r3][$r4]; $i1++) {
$this->seq_w1[$k] = $this->seq[$r3][$r4][$n];
$k++;
$n++;
if ($n > $this->n_seq[$r3][$r4]-1)
$n = 0;
}
if ($sw > 0) {
$n = $s1 + 1;
for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]-1; $i1++) {
if ($n > $this->n_seq[$r1][$r2]-1)
$n = 0;
$this->seq_w1[$k] = $this->seq[$r1][$r2][$n];
$k++;
$n++;
}
}
else {
$n = $s1 - 1;
for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]-1; $i1++) {
if ($n < 0)
$n = $this->n_seq[$r1][$r2] - 1;
$this->seq_w1[$k] = $this->seq[$r1][$r2][$n];
$k++;
$n--;
}
}
// 状態の変更
$this->n_seq[$r1][$r2] += $this->n_seq[$r3][$r4];
$this->state[$r3][$r4] = 1;
for ($i1 = 0; $i1 < $this->n_seq[$r1][$r2]; $i1++)
$this->seq[$r1][$r2][$i1] = $this->seq_w1[$i1];
$sw = 1;
}
}
}
$r = ($this->seisu > -2) ? intval(kyori($this->n_city, $this->seq_w1, $this->rg)) : round(kyori($this->n_city, $this->seq_w1, $this->rg));
$this->Max = $r;
return $r;
}
}
/*************************/
/* クラスIterationの定義 */
/*************************/
class Iteration {
private $city; //都市の位置データ
private $rg; // 都市間の距離
private $fix; // =1 : 近傍を固定
// =0 : 近傍を可変
private $max_try; // 最大試行回数
private $n_city; // 都市の数
private $out_d; // 表示間隔
private $seq_w1; // 都市を訪れる順序(ワーク)
private $seq_w2; // 都市を訪れる順序(ワーク)
private $seq_w3; // 都市を訪れる順序(ワーク)
private $seq_w4; // 都市を訪れる順序(ワーク)
private $seq_w5; // 都市を訪れる順序(ワーク)
private $neib; // 近傍(2 or 3)
private $out_lvl; // 出力レベル
// =0 : 最終出力だけ
// n>0 : n世代毎に出力(負の時はファイル)
private $out_m; // 出力方法
// =-1 : 出力しない
// =0 : すべてを出力
// =1 : 評価値だけを出力(最終結果だけはすべてを出力)
private $seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
private $sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
private $o_file; // 出力ファイル名
public $seq; // 都市を訪れる順序
/**********************************/
/* コンストラクタ */
/* n_city_i : 都市の数 */
/* max_try_i : 最大試行回数 */
/* sei_i : 整数 or 実数 */
/* sel_i : エッジの選択方法 */
/* neib_i : 近傍 */
/* fix_i : 近傍の扱い方 */
/* out_lvl_i : 出力レベル */
/* out_m_i : 出力方法 */
/* out_d_i : 表示間隔 */
/* o_file_i : 出力ファイル名 */
/* city_i : 都市の位置データ */
/**********************************/
function Iteration ($n_city_i, $max_tri_i, $sei_i, $sel_i, $neib_i, $fix_i, $out_lvl_i, $out_m_i, $out_d_i, $o_file_i, $city_i)
{
// 値の設定
$this->n_city = $n_city_i;
$this->max_try = $max_tri_i;
$this->seisu = $sei_i;
$this->sel = $sel_i;
$this->neib = $neib_i;
$this->fix = $fix_i;
$this->out_lvl = $out_lvl_i;
$this->out_m = $out_m_i;
$this->out_d = $out_d_i;
$this->o_file = $o_file_i;
// 都市の位置データ
$this->city = array($this->n_city);
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$this->city[$i1] = array(2);
$this->city[$i1][0] = $city_i[$i1][0];
$this->city[$i1][1] = $city_i[$i1][1];
}
// 距離テーブルの作成
$this->rg = array($this->n_city);
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$this->rg[$i1] = array($this->n_city);
for ($i2 = $i1+1; $i2 < $this->n_city; $i2++) {
$x = $this->city[$i2][0] - $this->city[$i1][0];
$y = $this->city[$i2][1] - $this->city[$i1][1];
$this->rg[$i1][$i2] = sqrt($x * $x + $y * $y);
if ($this->seisu > -2)
$this->rg[$i1][$i2] = round($this->rg[$i1][$i2]);
}
}
for ($i1 = 1; $i1 < $this->n_city; $i1++) {
for ($i2 = 0; $i2 < $i1; $i2++)
$this->rg[$i1][$i2] = $this->rg[$i2][$i1];
}
// 都市を訪れる順序(初期設定)
$this->seq = array($this->n_city);
$this->seq_w1 = array($this->n_city);
$this->seq_w2 = array($this->n_city);
$this->seq_w3 = array($this->n_city);
$this->seq_w4 = array($this->n_city);
$this->seq_w5 = array($this->n_city);
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$sw = 0;
while ($sw == 0) {
$ct = intval((mt_rand() / mt_getrandmax()) * $this->n_city);
if ($ct >= $this->n_city)
$ct = $this->n_city - 1;
$this->seq[$i1] = $ct;
$sw = 1;
for ($i2 = 0; $i2 < $i1 && $sw > 0; $i2++) {
if ($ct == $this->seq[$i2])
$sw = 0;
}
}
}
}
/****************/
/* 最適化の実行 */
/****************/
function Optimize()
{
// 初期設定
$n_tri = 0;
$max = kyori($this->n_city, $this->seq, $this->rg);
if ($this->out_m >= 0 && abs($this->out_lvl) > 0) {
if ($this->seisu > -2)
printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max));
else
printf("***試行回数 %d 距離 %f\n", $n_tri, $max);
$this->Output($this->out_lvl, $n_tri, $max);
}
// 実行
$sw = 1;
for ($n_tri = 1; $n_tri <= $this->max_try && $sw > 0; $n_tri++) {
// 改善
$sw = $this->Change($max);
// 出力
if ($this->out_d > 0 && $n_tri%$this->out_d == 0) {
if ($this->seisu > -2)
printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max));
else
printf("***試行回数 %d 距離 %f\n", $n_tri, $max);
}
if ($this->out_m >= 0 && abs($this->out_lvl) > 0) {
if ($n_tri%abs($this->out_lvl) == 0)
$this->Output($this->out_lvl, $n_tri, $max);
}
}
// 最終出力
if ($this->out_m >= 0) {
$n_tri--;
if ($this->seisu > -2)
printf("***試行回数 %d 距離 %d\n", $n_tri, intval($max));
else
printf("***試行回数 %d 距離 %f\n", $n_tri, $max);
$this->Output($this->out_lvl, $n_tri, $max);
}
return $n_tri;
}
/*******************************/
/* 出力 */
/* sw : >=0 : 出力先未定 */
/* < 0 : ファイル */
/* n_tri : 現在の試行回数 */
/* r : 距離 */
/*******************************/
function Output($sw, $n_tri, $r)
{
$k = 0;
if ($sw >= 0) {
printf(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ");
scanf(STDIN, "%d", $pr);
}
else
$pr = -1;
if ($pr != 0) {
if ($pr > 0) {
$out = STDOUT;
fgets(STDIN);
}
else {
$x = getdate();
$now = $x["hours"]."時".$x["minutes"]."分".$x["seconds"]."秒";
$out = fopen($this->o_file, "ab");
if ($this->seisu > -2)
fwrite($out, "***試行回数 ".$n_tri." 距離 ".intval($r)." 時間 ".$now."\n");
else
fwrite($out, "***試行回数 ".$n_tri." 距離 ".round($r)." 時間 ".$now."\n");
}
if ($this->out_m == 0) {
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$n = $this->seq[$i1];
if ($this->seisu > 0)
fwrite($out, " ".$n." ".intval($this->city[$n][0])." ".intval($this->city[$n][1])."\n");
else
fwrite($out, " ".$n." ".$this->city[$n][0]." ".$this->city[$n][1]."\n");
if ($pr > 0) {
$k++;
if ($k == $pr) {
fgets(STDIN);
$k = 0;
}
}
}
}
if ($pr <= 0)
fclose($out);
}
}
/**************************************/
/* エッジの入れ替え */
/* r_m : 距離 */
/* return : =0 : 改善がなかった */
/* =1 : 改善があった */
/**************************************/
function Change(&$r_m)
{
$max1 = 0.0;
$ch = 0;
$k1 = 0;
$k2 = 0;
$n1 = 0;
$n2 = 0;
$sw = 0;
$sw1 = 0;
$max = $r_m;
/*
近傍を可変
*/
if ($this->fix == 0) {
// 初期設定(k=2)
$k = 2;
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
$this->seq_w4[$i1] = $this->seq[$i1];
$this->seq_w3[$i1] = 0;
}
// 評価
$sw2 = 0;
for ($i0 = 0; $i0 < $this->n_city-2 && $sw2 < 2; $i0++) {
$n = ($i0 == 0) ? $this->n_city-1 : $this->n_city;
for ($i1 = $i0+2; $i1 < $n && $sw2 < 2; $i1++) {
// 相手の場所
$k3 = $i1;
$k4 = $k3 + 1;
if ($k4 > $this->n_city-1)
$k4 = 0;
// 順番の入れ替え
$n3 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) {
if ($this->seq_w4[$i2] == $this->seq[$i0+1])
$n3 = $i2 + 1;
}
$nn = $n3;
$n4 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n4 < 0; $i2++) {
if ($nn > $this->n_city-1)
$nn = 0;
if ($this->seq_w4[$nn] == $this->seq[$k3] || $this->seq_w4[$nn] == $this->seq[$k4])
$n4 = $this->seq_w4[$nn];
else
$nn++;
}
if ($n4 == $this->seq[$k4]) {
$n4 = $k3;
$k3 = $k4;
$k4 = $n4;
}
// 評価
$this->seq_w1[0] = $this->seq[$k4];
$this->seq_w1[1] = $this->seq[$i0+1];
$n4 = -1;
$nn = 2;
while ($n4 < 0) {
if ($n3 > $this->n_city-1)
$n3 = 0;
$this->seq_w1[$nn] = $this->seq_w4[$n3];
if ($this->seq_w4[$n3] == $this->seq[$k3])
$n4 = 1;
$nn++;
$n3++;
}
$this->seq_w1[$nn] = $this->seq[$i0];
$nn++;
$n3 = -1;
$n4 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) {
if ($this->seq_w4[$i2] == $this->seq[$i0]) {
$n3 = $i2 - 1;
if ($n3 < 0)
$n3 = $this->n_city - 1;
}
}
while ($n4 < 0) {
if ($this->seq_w4[$n3] == $this->seq[$k4])
$n4 = 1;
else {
$this->seq_w1[$nn] = $this->seq_w4[$n3];
$nn++;
$n3--;
if ($n3 < 0)
$n3 = $this->n_city - 1;
}
}
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
// 最適値の保存
if ($sw2 == 0 || $r < $max1) {
$sw2 = 1;
$max1 = $r;
$n1 = $k3;
$n2 = $k4;
$k1 = $i0;
$k2 = $i0 + 1;
for ($i2 = 0; $i2 < $this->n_city; $i2++)
$this->seq_w5[$i2] = $this->seq_w1[$i2];
if ($this->sel > 0 && $max1 < $max)
$sw2 = 2;
}
}
}
// 最適値の保存と近傍の増加
if ($sw2 > 0) {
if ($max1 < $max) {
$sw = 1;
$max = $max1;
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq_w2[$i1] = $this->seq_w5[$i1];
}
if ($k < $this->neib) {
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq_w4[$i1] = $this->seq_w5[$i1];
$this->seq_w3[$k1] = 1;
$this->seq_w3[$k2] = 1;
$this->seq_w3[$n1] = 1;
$this->seq_w3[$n2] = 1;
$k1 = $n2;
$k++;
}
else
$sw1 = 1;
}
else
$sw1 = 1;
// 実行(k>2)
while ($sw1 == 0) {
// 評価
$sw2 = 0;
for ($i1 = 0; $i1 < $this->n_city; $i1++) {
// 相手の場所
$k3 = $i1;
$k4 = $k3 + 1;
if ($k4 > $this->n_city-1)
$k4 = 0;
if ($this->seq_w3[$k3] == 0 && $this->seq_w3[$k4] == 0) {
// 順番の入れ替え
$n3 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) {
if ($this->seq_w4[$i2] == $this->seq[$k2])
$n3 = $i2 + 1;
}
$nn = $n3;
$n4 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n4 < 0; $i2++) {
if ($nn > $this->n_city-1)
$nn = 0;
if ($this->seq_w4[$nn] == $this->seq[$k3] || $this->seq_w4[$nn] == $this->seq[$k4])
$n4 = $this->seq_w4[$nn];
else
$nn++;
}
if ($n4 == $this->seq[$k4]) {
$n4 = $k3;
$k3 = $k4;
$k4 = $n4;
}
// 評価
$this->seq_w1[0] = $this->seq[$k4];
$this->seq_w1[1] = $this->seq[$k2];
$n4 = -1;
$nn = 2;
while ($n4 < 0) {
if ($n3 > $this->n_city-1)
$n3 = 0;
$this->seq_w1[$nn] = $this->seq_w4[$n3];
if ($this->seq_w4[$n3] == $this->seq[$k3])
$n4 = 1;
$nn++;
$n3++;
}
$this->seq_w1[$nn] = $this->seq[$k1];
$nn++;
$n3 = -1;
$n4 = -1;
for ($i2 = 0; $i2 < $this->n_city && $n3 < 0; $i2++) {
if ($this->seq_w4[$i2] == $this->seq[$k1]) {
$n3 = $i2 - 1;
if ($n3 < 0)
$n3 = $this->n_city - 1;
}
}
while ($n4 < 0) {
if ($this->seq_w4[$n3] == $this->seq[$k4])
$n4 = 1;
else {
$this->seq_w1[$nn] = $this->seq_w4[$n3];
$nn++;
$n3--;
if ($n3 < 0)
$n3 = $this->n_city - 1;
}
}
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
// 最適値の保存
if ($sw2 == 0 || $r < $max1) {
$sw2 = 1;
$max1 = $r;
$n1 = $k3;
$n2 = $k4;
for ($i2 = 0; $i2 < $this->n_city; $i2++)
$this->seq_w5[$i2] = $this->seq_w1[$i2];
}
}
}
// 最適値の保存と近傍の増加
if ($sw2 > 0) {
if ($max1 < $max) {
$sw = 1;
$max = $max1;
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq_w2[$i1] = $this->seq_w5[$i1];
}
if ($k < $this->neib) {
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq_w4[$i1] = $this->seq_w5[$i1];
$this->seq_w3[$n1] = 1;
$this->seq_w3[$n2] = 1;
$k1 = $n2;
$k++;
}
else
$sw1 = 1;
}
else
$sw1 = 1;
}
}
/*
近傍を固定
*/
else {
$n3 = intval((mt_rand() / mt_getrandmax()) * ($this->n_city - 2));
if ($n3 > $this->n_city-3)
$n3 = $this->n_city - 3;
// 2近傍
for ($i1 = 0; $i1 <= $this->n_city-3 && $ch == 0; $i1++) {
if ($n3 == 0)
$n1 = $this->n_city - 2;
else
$n1 = $this->n_city - 1;
for ($i2 = $n3+2; $i2 <= $n1 && $ch == 0; $i2++) {
// 枝の場所((n3,n3+1), (k1,k2))
$k1 = $i2;
if ($i2 == $this->n_city-1)
$k2 = 0;
else
$k2 = $i2 + 1;
// 枝の入れ替え
$this->seq_w1[0] = $this->seq[$n3];
$k = 1;
for ($i3 = $k1; $i3 >= $n3+1; $i3--) {
$this->seq_w1[$k] = $this->seq[$i3];
$k++;
}
$nn = $k2;
while ($nn != $n3) {
$this->seq_w1[$k] = $this->seq[$nn];
$k++;
$nn++;
if ($nn > $this->n_city-1)
$nn = 0;
}
// 評価
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
if ($r < $max) {
$max = $r;
$sw = 1;
for ($i3 = 0; $i3 < $this->n_city; $i3++)
$this->seq_w2[$i3] = $this->seq_w1[$i3];
if ($this->sel > 0)
$ch = 1;
}
}
$n3++;
if ($n3 > $this->n_city-3)
$n3 = 0;
}
// 3近傍
if ($this->neib == 3 && $ch == 0) {
for ($i1 = 0; $i1 <= $this->n_city-3 && $ch == 0; $i1++) {
$n1 = $this->n_city - 2;
$n2 = $this->n_city - 1;
for ($i2 = $n3+1; $i2 <= $n1 && $ch == 0; $i2++) {
for ($i3 = $i2+1; $i3 <= $n2 && $ch == 0; $i3++) {
// 枝の場所((n3,n3+1), ($i2,$i2+1), (k1,k2))
$k1 = $i3;
if ($i3 == $this->n_city-1)
$k2 = 0;
else
$k2 = $i3 + 1;
// 枝の入れ替えと評価
// 入れ替え(その1)
$this->seq_w1[0] = $this->seq[$n3];
$k = 1;
for ($i4 = $i2; $i4 >= $n3+1; $i4--) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
for ($i4 = $k1; $i4 >= $i2+1; $i4--) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
$nn = $k2;
while ($nn != $n3) {
$this->seq_w1[$k] = $this->seq[$nn];
$k++;
$nn++;
if ($nn > $this->n_city-1)
$nn = 0;
}
// 評価(その1)
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
if ($r < $max) {
$max = $r;
$sw = 1;
for ($i3 = 0; $i3 < $this->n_city; $i3++)
$this->seq_w2[$i3] = $this->seq_w1[$i3];
if ($this->sel > 0)
$ch = 1;
}
// 入れ替え(その2)
$this->seq_w1[0] = $this->seq[$n3];
$k = 1;
for ($i4 = $k1; $i4 >= $i2+1; $i4--) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
for ($i4 = $n3+1; $i4 <= $i2; $i4++) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
$nn = $k2;
while ($nn != $n3) {
$this->seq_w1[$k] = $this->seq[$nn];
$k++;
$nn++;
if ($nn > $this->n_city-1)
$nn = 0;
}
// 評価(その2)
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
if ($r < $max) {
$max = $r;
$sw = 1;
for ($i3 = 0; $i3 < $this->n_city; $i3++)
$this->seq_w2[$i3] = $this->seq_w1[$i3];
if ($this->sel > 0)
$ch = 1;
}
// 入れ替え(その3)
$this->seq_w1[0] = $this->seq[$n3];
$k = 1;
for ($i4 = $i2+1; $i4 <= $k1; $i4++) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
for ($i4 = $i2; $i4 >= $n3+1; $i4--) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
$nn = $k2;
while ($nn != $n3) {
$this->seq_w1[$k] = $this->seq[$nn];
$k++;
$nn++;
if ($nn > $this->n_city-1)
$nn = 0;
}
// 評価(その3)
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
if ($r < $max) {
$max = $r;
$sw = 1;
for ($i3 = 0; $i3 < $this->n_city; $i3++)
$this->seq_w2[$i3] = $this->seq_w1[$i3];
if ($this->sel > 0)
$ch = 1;
}
// 入れ替え(その4)
$this->seq_w1[0] = $this->seq[$n3];
$k = 1;
for ($i4 = $i2+1; $i4 <= $k1; $i4++) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
for ($i4 = $n3+1; $i4 <= $i2; $i4++) {
$this->seq_w1[$k] = $this->seq[$i4];
$k++;
}
$nn = $k2;
while ($nn != $n3) {
$this->seq_w1[$k] = $this->seq[$nn];
$k++;
$nn++;
if ($nn > $this->n_city-1)
$nn = 0;
}
// 評価(その4)
$r = kyori($this->n_city, $this->seq_w1, $this->rg);
if ($r < $max) {
$max = $r;
$sw = 1;
for ($i3 = 0; $i3 < $this->n_city; $i3++)
$this->seq_w2[$i3] = $this->seq_w1[$i3];
if ($this->sel > 0)
$ch = 1;
}
}
}
$n3++;
if ($n3 > $this->n_city-3)
$n3 = 0;
}
}
}
// 設定
if ($sw > 0) {
$r_m = $max;
for ($i1 = 0; $i1 < $this->n_city; $i1++)
$this->seq[$i1] = $this->seq_w2[$i1];
}
return $sw;
}
}
/*********************************/
/* 距離の計算 */
/* n_c : 都市の数 */
/* p : 都市番号 */
/* rg : 都市間の距離 */
/* return : 距離 */
/*********************************/
function kyori($n_c, $p, $rg)
{
$range = 0;
$n1 = $p[0];
for ($i1 = 1; $i1 < $n_c; $i1++) {
$n2 = $p[$i1];
$range += $rg[$n1][$n2];
$n1 = $n2;
}
$n2 = $p[0];
$range += $rg[$n1][$n2];
return $range;
}
/****************/
/* main program */
/****************/
// 入力ミス
if (count($argv) <= 1)
exit("***error ファイル名を入力して下さい\n");
// 入力OK
else {
// ファイルのオープン
$in = fopen($argv[1], "rb");
if ($in == NULL)
exit("***error ファイル名が不適当です\n");
// 入力データファイル名と問題数
fscanf($in, "%*s %d", $nm);
for ($i0 = 0; $i0 < $nm; $i0++) {
// 各問題の実行
fscanf($in, "%*s %s %*s %d", $i_file, $n);
$pt = new Partition($i_file);
$mean = 0.0;
$max = -1;
// 乱数の初期値を変える
for ($i1 = 0; $i1 < $n; $i1++) {
// 問題
printf("\n+++++問題 %s +++++\n", $i_file);
// 最適化
$pt->Optimize(1000 * $i1 + 1234567); // 引数は乱数の初期値
// 最適値とその平均の計算
$mean += $pt->Max;
if ($max < 0 || $pt->Max < $max)
$max = $pt->Max;
}
// 結果
if ($pt->out_m <= 0)
printf(" -----最小 %d 平均 %f-----\n", $max, $mean/$n);
else {
$out = fopen($pt->o_file, "ab");
$str = sprintf(" -----最小 %d 平均 %f-----\n", $max, $mean/$n);
fwrite($out, $str);
fclose($out);
}
}
fclose($in);
}
//------------------------ケーススタディデータ(data.txt)------
/*
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
*/
//---------------------データファイル(data1.txt)------------
/*
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
*/
//---------------------データファイル(data2.txt)------------
/*
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
*/
?>
################################
# 巡回セールスマン問題(分割法)
# coded by Y.Suganuma
################################
#################################
# 距離の計算
# n_c : 都市の数
# p : 都市番号
# rg : 都市間の距離
# return : 距離
#################################
def kyori(n_c, p, rg)
r = 0.0
n1 = p[0]
for i1 in 1 ... n_c
n2 = p[i1]
r += rg[n1][n2]
n1 = n2
end
n2 = p[0]
r += rg[n1][n2]
return r
end
#########################
# クラスIterationの定義
#########################
class Iteration
###################################
# コンストラクタ
# n_city_i 都市の数
# max_try_i 最大試行回数
# sei_i 整数 or 実数
# sel_i エッジの選択方法
# neib_i 近傍
# fix_i 近傍の扱い方
# out_lvl_i 出力レベル
# out_m_i 出力方法
# out_d_i 表示間隔
# o_file_i 出力ファイル名
# city_i 都市の位置データ
###################################
def initialize(n_city_i, max_tri_i, sei_i, sel_i, neib_i, fix_i, out_lvl_i, out_m_i, out_d_i, o_file_i, city_i)
# 値の設定
@_n_city = n_city_i # 都市の数
@_max_try = max_tri_i # 最大試行回数
@_seisu = sei_i # 位置データの表現方法
# =1 整数
# =-1 実数(距離を整数計算)
# =-2 実数(距離を実数計算)
@_sel = sel_i # エッジの選択方法
# =0 最良のものを選択
# =1 最初のものを選択
@_neib = neib_i # 近傍(2 or 3)
@_fix = fix_i # =1 近傍を固定
# =0 近傍を可変
@_out_lvl = out_lvl_i # 出力レベル
# =0 最終出力だけ
# n>0 n世代毎に出力(負の時はファイル)
@_out_m = out_m_i # 出力方法
# =-1 出力しない
# =0 すべてを出力
# =1 評価値だけを出力(最終結果だけはすべてを出力)
@_out_d = out_d_i # 表示間隔
@_o_file = o_file_i # 出力ファイル名
@_city = city_i # 都市の位置データ
# 距離テーブルの作成
@_rg = Array.new(@_n_city)
for i1 in 0 ... @_n_city
@_rg[i1] = Array.new(@_n_city)
end
for i1 in 0 ... @_n_city-1
for i2 in i1+1 ... @_n_city
x = @_city[i2][0] - @_city[i1][0]
y = @_city[i2][1] - @_city[i1][1]
@_rg[i1][i2] = Math.sqrt(x * x + y * y)
if @_seisu > -2
@_rg[i1][i2] = @_rg[i1][i2].round()
end
end
end
for i1 in 1 ... @_n_city
for i2 in 0 ... i1
@_rg[i1][i2] = @_rg[i2][i1]
end
end
# 都市を訪れる順序(初期設定)
@_seq = Array.new(@_n_city)
@_seq_w1 = Array.new(@_n_city)
@_seq_w2 = Array.new(@_n_city)
@_seq_w3 = Array.new(@_n_city)
@_seq_w4 = Array.new(@_n_city)
@_seq_w5 = Array.new(@_n_city)
for i1 in 0 ... @_n_city
sw = 0
while sw == 0
ct = Integer(rand(0) * @_n_city)
if ct >= @_n_city
ct = @_n_city - 1
end
@_seq[i1] = ct
sw = 1
for i2 in 0 ... i1
if ct == @_seq[i2]
sw = 0
break
end
end
end
end
end
################
# 最適化の実行
################
def Optimize ()
# 初期設定
n_tri = 0
max = Array.new(1)
max[0] = kyori(@_n_city, @_seq, @_rg)
if @_out_m >= 0 && @_out_lvl.abs() > 0
if @_seisu > -2
print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n")
else
print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n")
end
Output(@_out_lvl, n_tri, max[0])
end
# 実行
sw = 1
for n_tri in 1 ... @_max_try+1
# 改善
sw = Change(max)
# 出力
if @_out_d > 0 and n_tri%@_out_d == 0
if @_seisu > -2
print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n")
else
print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n")
end
end
if @_out_m >= 0 && @_out_lvl.abs() > 0
if n_tri%@_out_lvl.abs() == 0
Output(@_out_lvl, n_tri, max[0])
end
end
if sw <= 0
break
end
end
# 最終出力
if @_out_m >= 0
n_tri -= 1
if @_seisu > -2
print("***試行回数 " + String(n_tri) + " 距離 " + String(Integer(max[0])) + "\n")
else
print("***試行回数 " + String(n_tri) + " 距離 " + String(max[0]) + "\n")
end
Output(@_out_lvl, n_tri, max[0])
end
return n_tri
end
################################
# 出力
# sw >=0 出力先未定
# <0 ファイル
# n_tri 現在の試行回数
# r 距離
################################
def Output(sw, n_tri, r)
k = 0
if sw >= 0
print(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ")
pr = Integer($stdin.gets())
else
pr = -1
end
if pr != 0
if pr > 0
out = $stdout
$stdin.gets()
else
now = String(Time.now)
out = open(@_o_file, "a")
if @_seisu > -2
out.print("***試行回数 " + String(n_tri) + " 距離 " + String(int(r)) + " 時間 " + now + "\n")
else
out.print("***試行回数 " + String(n_tri) + " 距離 " + String(r) + " 時間 " + now + "\n")
end
end
if @_out_m == 0
for i1 in 0 ... @_n_city
n = @_seq[i1]
if @_seisu > 0
out.write(" " + String(n) + " " + String(int(@_city[n][0])) + " " + String(int(@_city[n][1])) + "\n")
else
out.write(" " + String(n) + " " + String(@_city[n][0]) + " " + String(@_city[n][1]) + "\n")
end
if pr > 0
k += 1
if k == pr
$stdin.gets()
k = 0
end
end
end
end
if pr <= 0
out.close()
end
end
end
#######################################
# エッジの入れ替え
# r_m 距離
# return =0 改善がなかった
# =1 改善があった
#######################################
def Change(r_m)
max = r_m[0]
max1 = 0.0
ch = 0
k1 = 0
k2 = 0
n1 = 0
n2 = 0
sw = 0
sw1 = 0
# 近傍を可変
if @_fix == 0
# 初期設定(k=2)
k = 2
for i1 in 0 ... @_n_city
@_seq_w4[i1] = @_seq[i1]
@_seq_w3[i1] = 0
end
# 評価
sw2 = 0
i0 = 0
while i0 < @_n_city-2 && sw2 < 2
if i0 == 0
n = @_n_city - 1
else
n = @_n_city
end
i1 = i0 + 2
while i1 < n && sw2 < 2
# 相手の場所
k3 = i1
k4 = k3 + 1
if k4 > @_n_city-1
k4 = 0
end
# 順番の入れ替え
n3 = -1
for i2 in 0 ... @_n_city
if @_seq_w4[i2] == @_seq[i0+1]
n3 = i2 + 1
break
end
end
nn = n3
n4 = -1
for i2 in 0 ... @_n_city
if nn > @_n_city-1
nn = 0
end
if @_seq_w4[nn] == @_seq[k3] || @_seq_w4[nn] == @_seq[k4]
n4 = @_seq_w4[nn]
break
else
nn += 1
end
end
if n4 == @_seq[k4]
n4 = k3
k3 = k4
k4 = n4
end
# 評価
@_seq_w1[0] = @_seq[k4]
@_seq_w1[1] = @_seq[i0+1]
n4 = -1
nn = 2
while n4 < 0
if n3 > @_n_city-1
n3 = 0
end
@_seq_w1[nn] = @_seq_w4[n3]
if @_seq_w4[n3] == @_seq[k3]
n4 = 1
end
nn += 1
n3 += 1
end
@_seq_w1[nn] = @_seq[i0]
nn += 1
n3 = -1
n4 = -1
for i2 in 0 ... @_n_city
if @_seq_w4[i2] == @_seq[i0]
n3 = i2 - 1
if n3 < 0
n3 = @_n_city - 1
end
break
end
end
while n4 < 0
if @_seq_w4[n3] == @_seq[k4]
n4 = 1
else
@_seq_w1[nn] = @_seq_w4[n3]
nn += 1
n3 -= 1
if n3 < 0
n3 = @_n_city - 1
end
end
end
r = kyori(@_n_city, @_seq_w1, @_rg)
# 最適値の保存
if sw2 == 0 || r < max1
sw2 = 1
max1 = r
n1 = k3
n2 = k4
k1 = i0
k2 = i0 + 1
for i2 in 0 ... @_n_city
@_seq_w5[i2] = @_seq_w1[i2]
end
if @_sel > 0 && max1 < max
sw2 = 2
end
end
i1 += 1
end
i0 += 1
end
# 最適値の保存と近傍の増加
if sw2 > 0
if max1 < max
sw = 1
max = max1
for i1 in 0 ... @_n_city
@_seq_w2[i1] = @_seq_w5[i1]
end
end
if k < @_neib
for i1 in 0 ... @_n_city
@_seq_w4[i1] = @_seq_w5[i1]
end
@_seq_w3[k1] = 1
@_seq_w3[k2] = 1
@_seq_w3[n1] = 1
@_seq_w3[n2] = 1
k1 = n2
k += 1
else
sw1 = 1
end
else
sw1 = 1
end
# 実行(k>2)
while sw1 == 0
# 評価
sw2 = 0
for i1 in 0 ... @_n_city
# 相手の場所
k3 = i1
k4 = k3 + 1
if k4 > @_n_city-1
k4 = 0
end
if @_seq_w3[k3] == 0 && @_seq_w3[k4] == 0
# 順番の入れ替え
n3 = -1
for i2 in 0 ... @_n_city
if @_seq_w4[i2] == @_seq[k2]
n3 = i2 + 1
break
end
end
nn = n3
n4 = -1
for i2 in 0 ... @_n_city
if nn > @_n_city-1
nn = 0
end
if @_seq_w4[nn] == @_seq[k3] || @_seq_w4[nn] == @_seq[k4]
n4 = @_seq_w4[nn]
break
else
nn += 1
end
end
if n4 == @_seq[k4]
n4 = k3
k3 = k4
k4 = n4
end
# 評価
@_seq_w1[0] = @_seq[k4]
@_seq_w1[1] = @_seq[k2]
n4 = -1
nn = 2
while n4 < 0
if n3 > @_n_city-1
n3 = 0
end
@_seq_w1[nn] = @_seq_w4[n3]
if @_seq_w4[n3] == @_seq[k3]
n4 = 1
end
nn += 1
n3 += 1
end
@_seq_w1[nn] = @_seq[k1]
nn += 1
n3 = -1
n4 = -1
for i2 in 0 ... @_n_city
if @_seq_w4[i2] == @_seq[k1]
n3 = i2 - 1
if n3 < 0
n3 = @_n_city - 1
end
break
end
end
while n4 < 0
if @_seq_w4[n3] == @_seq[k4]
n4 = 1
else
@_seq_w1[nn] = @_seq_w4[n3]
nn += 1
n3 -= 1
if n3 < 0
n3 = @_n_city - 1
end
end
end
r = kyori(@_n_city, @_seq_w1, @_rg)
# 最適値の保存
if sw2 == 0 || r < max1
sw2 = 1
max1 = r
n1 = k3
n2 = k4
for i2 in 0 ... @_n_city
@_seq_w5[i2] = @_seq_w1[i2]
end
end
end
end
# 最適値の保存と近傍の増加
if sw2 > 0
if max1 < max
sw = 1
max = max1
for i1 in 0 ... @_n_city
@_seq_w2[i1] = @_seq_w5[i1]
end
end
if k < @_neib
for i1 in 0 ... @_n_city
@_seq_w4[i1] = @_seq_w5[i1]
end
@_seq_w3[n1] = 1
@_seq_w3[n2] = 1
k1 = n2
k += 1
else
sw1 = 1
end
else
sw1 = 1
end
end
# 近傍を固定
else
n3 = Integer(rand(0) * (@_n_city - 2))
if n3 > @_n_city-3
n3 = @_n_city - 3
end
# 2近傍
i1 = 0
while i1 <= @_n_city-3 && ch == 0
if n3 == 0
n1 = @_n_city - 2
else
n1 = @_n_city - 1
end
i2 = n3 + 2
while i2 <= n1 && ch == 0
# 枝の場所((n3,n3+1), (k1,k2))
k1 = i2
if i2 == @_n_city-1
k2 = 0
else
k2 = i2 + 1
end
# 枝の入れ替え
@_seq_w1[0] = @_seq[n3]
k = 1
i3 = k1
while i3 > n3
@_seq_w1[k] = @_seq[i3]
k += 1
i3 -= 1
end
nn = k2
while nn != n3
@_seq_w1[k] = @_seq[nn]
k += 1
nn += 1
if nn > @_n_city-1
nn = 0
end
end
# 評価
r = kyori(@_n_city, @_seq_w1, @_rg)
if r < max
max = r
sw = 1
for i3 in 0 ... @_n_city
@_seq_w2[i3] = @_seq_w1[i3]
end
if @_sel > 0
ch = 1
end
end
i2 += 1
end
n3 += 1
if n3 > @_n_city-3
n3 = 0
end
i1 += 1
end
# 3近傍
if @_neib == 3 && ch == 0
i1 = 0
while i1 <= @_n_city-3 && ch == 0
n1 = @_n_city - 2
n2 = @_n_city - 1
i2 = n3 + 1
while i2 <= n1 && ch == 0
i3 = i2 + 1
while i3 <= n2 && ch == 0
# 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3
if i3 == @_n_city-1
k2 = 0
else
k2 = i3 + 1
end
# 枝の入れ替えと評価
# 入れ替え(その1)
@_seq_w1[0] = @_seq[n3]
k = 1
i4 = i2
while i4 > n3
@_seq_w1[k] = @_seq[i4]
k += 1
i4 -= 1
end
i4 = k1
while i4 > i2
@_seq_w1[k] = @_seq[i4]
k += 1
i4 -= 1
end
nn = k2
while nn != n3
@_seq_w1[k] = @_seq[nn]
k += 1
nn += 1
if nn > @_n_city-1
nn = 0
end
end
# 評価(その1)
r = kyori(@_n_city, @_seq_w1, @_rg)
if r < max
max = r
sw = 1
for i3 in 0 ... @_n_city
@_seq_w2[i3] = @_seq_w1[i3]
end
if @_sel > 0
ch = 1
end
end
# 入れ替え(その2)
@_seq_w1[0] = @_seq[n3]
k = 1
i4 = k1
while i4 > i2
@_seq_w1[k] = @_seq[i4]
k += 1
i4 -= 1
end
for i4 in n3+1 ... i2+1
@_seq_w1[k] = @_seq[i4]
k += 1
end
nn = k2
while nn != n3
@_seq_w1[k] = @_seq[nn]
k += 1
nn += 1
if nn > @_n_city-1
nn = 0
end
end
# 評価(その2)
r = kyori(@_n_city, @_seq_w1, @_rg)
if r < max
max = r
sw = 1
for i3 in 0 ...@_n_city
@_seq_w2[i3] = @_seq_w1[i3]
end
if @_sel > 0
ch = 1
end
end
# 入れ替え(その3)
@_seq_w1[0] = @_seq[n3]
k = 1
for i4 in i2+1 ...k1+1
@_seq_w1[k] = @_seq[i4]
k += 1
end
i4 = i2
while i4 > n3
@_seq_w1[k] = @_seq[i4]
k += 1
i4 -= 1
end
nn = k2
while nn != n3
@_seq_w1[k] = @_seq[nn]
k += 1
nn += 1
if nn > @_n_city-1
nn = 0
end
end
# 評価(その3)
r = kyori(@_n_city, @_seq_w1, @_rg)
if r < max
max = r
sw = 1
for i3 in 0 ... @_n_city
@_seq_w2[i3] = @_seq_w1[i3]
end
if @_sel > 0
ch = 1
end
end
# 入れ替え(その4)
@_seq_w1[0] = @_seq[n3]
k = 1
for i4 in i2+1 ... k1+1
@_seq_w1[k] = @_seq[i4]
k += 1
end
for i4 in n3+1 ... i2+1
@_seq_w1[k] = @_seq[i4]
k += 1
end
nn = k2
while nn != n3
@_seq_w1[k] = @_seq[nn]
k += 1
nn += 1
if nn > @_n_city-1
nn = 0
end
end
# 評価(その4)
r = kyori(@_n_city, @_seq_w1, @_rg)
if r < max
max = r
sw = 1
for i3 in 0 ... @_n_city
@_seq_w2[i3] = @_seq_w1[i3]
end
if @_sel > 0
ch = 1
end
end
i3 += 1
end
i2 += 1
end
n3 += 1
if n3 > @_n_city-3
n3 = 0
end
i1 += 1
end
end
end
# 設定
if sw > 0
r_m[0] = max
for i1 in 0 ... @_n_city
@_seq[i1] = @_seq_w2[i1]
end
end
return sw
end
attr("_seq", true)
end
#########################
# クラスPartitionの定義
#########################
class Partition
##########################
# コンストラクタ
# name ファイル名
##########################
def initialize(name)
max = 0
# ファイルのオープン
@_i_file = name # 入力ファイル名
inn = open(name, "r")
# 基本データ
s = inn.gets().split(" ")
@_n_city = Integer(s[1]) # 都市の数
@_sel = Integer(s[3]) # エッジの選択方法
# =0 最良のものを選択
# =1 最初のものを選択
@_neib = Integer(s[5]) # 近傍(2 or 3)
@_seisu = Integer(s[7]) # 位置データの表現方法
# =1 整数
# =-1 実数(距離を整数計算)
# =-2 実数(距離を実数計算)
s = inn.gets().split(" ")
@_out_m = Integer(s[1]) # 出力方法
# =-1 ディスプレイ(経路長だけ)
# =0 ディスプレイ
# =1 ファイル
# =2 ファイル(経路長だけ)
@_o_file = ""
if @_out_m > 0
@_o_file = s[3]
end
s = inn.gets().split(" ")
@_n_p_x = Integer(s[2]) # x軸方向の分割数
@_n_p_y = Integer(s[4]) # y軸方向の分割数
@_max_try = Integer(s[6]) # 最大試行回数
@_fix = 1 # =1 近傍を固定
# =0 近傍を可変
if @_neib < 0
@_neib = -@_neib
@_fix = 0
end
# 都市の位置データ
@_city = Array.new(@_n_city)
for i1 in 0 ... @_n_city
@_city[i1] = Array.new(2)
s = inn.gets().split(" ")
@_city[i1][0] = Float(s[0])
@_city[i1][1] = Float(s[1])
end
# ファイルのクローズ
inn.close()
# 距離テーブルの作成
@_rg = Array.new(@_n_city) # 都市間の距離
for i1 in 0 ... @_n_city
@_rg[i1] = Array.new(@_n_city)
for i2 in i1+1 ... @_n_city
x = @_city[i2][0] - @_city[i1][0]
y = @_city[i2][1] - @_city[i1][1]
@_rg[i1][i2] = Math.sqrt(x * x + y * y)
if @_seisu > -2
@_rg[i1][i2] = rg[i1][i2].round()
end
end
end
for i1 in 0 ... @_n_city
for i2 in 0 ... i1
@_rg[i1][i2] = @_rg[i2][i1]
end
end
# 作業領域
@_state = Array.new(@_n_p_y) # 領域結合用ワーク
@_n_seq = Array.new(@_n_p_y) # 各領域の都市数
@_n_seq1 = Array.new(@_n_p_y) # 各領域の都市数(ワーク)
for i1 in 0 ... @_n_p_y
@_state[i1] = Array.new(@_n_p_x) # 領域結合用ワーク
@_n_seq[i1] = Array.new(@_n_p_x) # 各領域の都市数
@_n_seq1[i1] = Array.new(@_n_p_x) # 各領域の都市数(ワーク)
end
@_seq_w1 = Array.new(@_n_city) # 作業領域
for i1 in 0 ... @_n_city
@_seq_w1[i1] = 0
end
@_seq_w2 = Array.new(@_n_city) # 作業領域
@_p_x = Array.new(@_n_p_x) # x軸の分割点
@_p_y = Array.new(@_n_p_y) # y軸の分割点
# 都市の分割
min_x = @_city[0][0]
max_x = @_city[0][0]
min_y = @_city[0][1]
max_y = @_city[0][1]
for i1 in 1 ... @_n_city
if @_city[i1][0] < min_x
min_x = @_city[i1][0]
else
if @_city[i1][0] > max_x
max_x = @_city[i1][0]
end
end
if @_city[i1][1] < min_y
min_y = @_city[i1][1]
else
if @_city[i1][1] > max_y
max_y = @_city[i1][1]
end
end
end
s_x = (max_x - min_x) / @_n_p_x
@_p_x[0] = min_x + s_x
@_p_x[@_n_p_x-1] = max_x
for i1 in 1 ... @_n_p_x-1
@_p_x[i1] = @_p_x[0] + i1 * s_x
end
s_y = (max_y - min_y) / @_n_p_y
@_p_y[0] = min_y + s_y
@_p_y[@_n_p_y-1] = max_y
for i1 in 1 ... @_n_p_y-1
@_p_y[i1] = @_p_y[0] + i1 * s_y
end
@_seq = Array.new(@_n_p_y) # 経路
@_seq1 = Array.new(@_n_p_y) # 経路(ワーク)
for i1 in 0 ... @_n_p_y
@_seq[i1] = Array.new(@_n_p_x)
@_seq1[i1] = Array.new(@_n_p_x)
for i2 in 0 ... @_n_p_x
@_seq[i1][i2] = Array.new(@_n_city)
@_seq1[i1][i2] = Array.new(@_n_city)
n = 0
for i3 in 0 ... @_n_city
if @_seq_w1[i3] == 0
if @_city[i3][0] <= @_p_x[i2] && @_city[i3][1] <= @_p_y[i1]
@_seq_w1[i3] = 1
@_seq_w2[n] = i3
n += 1
end
end
end
@_n_seq1[i1][i2] = n
if n > 0
for i3 in 0 ... n
@_seq1[i1][i2][i3] = @_seq_w2[i3]
end
if n > max
max = n
end
end
end
end
# 作業領域
print("最大都市数 " + String(max) + "\n")
@_city_i = Array.new(max) # 都市の位置データ(作業領域)
for i1 in 0 ... max
@_city_i[i1] = Array.new(2)
end
@_max = 0 # 最適経路の長さ
end
##################
# 最適化の実行
##################
def Optimize()
r = 0
# 分割数と開始時間の出力
if @_out_m > 0
Output(0, r)
end
for i1 in 0 ... @_n_p_y
for i2 in 0 ... @_n_p_x
@_n_seq[i1][i2] = @_n_seq1[i1][i2]
for i3 in 0 ... @_n_seq1[i1][i2]
@_seq[i1][i2][i3] = @_seq1[i1][i2][i3]
end
end
end
# 分割毎の最適化
for i1 in 0 ... @_n_p_y
for i2 in 0 ... @_n_p_x
if @_n_seq[i1][i2] > 3
# 近傍の大きさ
if @_n_seq[i1][i2] > 3
nb = @_neib
else
nb = 2
end
# 都市位置データの設定
for i3 in 0 ... @_n_seq[i1][i2]
k = @_seq[i1][i2][i3]
@_city_i[i3][0] = @_city[k][0]
@_city_i[i3][1] = @_city[k][1]
end
# 最適化
it = Iteration.new(@_n_seq[i1][i2], @_max_try, @_seisu, @_sel, nb, @_fix, 0, -1, 0, @_o_file, @_city_i)
max = it.Optimize()
# 結果の保存
for i3 in 0 ... @_n_seq[i1][i2]
k = it._seq[i3]
@_seq_w1[i3] = @_seq[i1][i2][k]
end
for i3 in 0 ... @_n_seq[i1][i2]
@_seq[i1][i2][i3] = @_seq_w1[i3]
end
# 出力
if @_seisu > -2
r = Integer(kyori(@_n_seq[i1][i2], @_seq[i1][i2], @_rg))
else
r = kyori(@_n_seq[i1][i2], @_seq[i1][i2], @_rg).round()
print(" y " + String(i1+1) + " x " + String(i2+1) + " n_city " + String(@_n_seq[i1][i2]) + " range " + String(r) + " (trial " + String(max) + ")\n")
end
end
end
end
# 経路の接続
r = Connect()
# 出力
Output(@_n_city, r)
end
########################
# 出力
# n_c 都市の数
# r 距離
########################
def Output(n_c, r)
k = 0
if @_out_m <= 0
print("距離 " + String(r) + "\n")
out = $stdout
$stdin.gets()
else
now = String(Time.now)
out = open(@_o_file, "a")
if n_c > 0
print("距離 " + String(r) + "\n")
printf(out, " 距離 " + String(r) + " 時間 " + now + "\n")
else
printf("問題 " + @_i_file + " 分割 " + String(@_n_p_x) + " " + String(@_n_p_y) + " 時間 " + now + "\n")
end
end
if n_c > 0 && (@_out_m == 0 || @_out_m == 1)
for i1 in 0 ... n_c
n = @_seq_w1[i1]
if @_seisu > 0
out.print(" " + String(n) + " " + String(int(@_city[n][0])) + " " + String(int(@_city[n][1])) + "\n")
else
out.print(" " + String(n) + " " + String(@_city[n][0]) + " " + String(@_city[n][1]) + "\n")
end
if @_out_m == 0
k += 1
if k == 10
$stdin.gets()
k = 0
end
end
end
end
if @_out_m > 0
out.close()
end
end
########################
# 分割された領域の接続
########################
def Connect()
min = 0
k1 = 0
k2 = 0
k3 = 0
k4 = 0
min_c = 0
r1 = 0
r2 = 0
r3 = 0
r4 = 0
s1 = 0
s2 = 0
sw = 1
# 領域が1つの場合
if @_n_p_x == 1 && @_n_p_y == 1
for i1 in 0 ... @_n_seq[0][0]
@_seq_w1[i1] = @_seq[0][0][i1]
end
# 初期設定
else
for i1 in 0 ... @_n_p_y
for i2 in 0 ... @_n_p_x
if @_n_seq[i1][i2] > 0
@_state[i1][i2] = 0
else
@_state[i1][i2] = 1
end
end
end
# 実行
while sw > 0
# 最小節点領域
min_c = @_n_city
sw = 0
for i1 in 0 ... @_n_p_y
for i2 in 0 ... @_n_p_x
if @_state[i1][i2] == 0 && @_n_seq[i1][i2] < min_c
sw = 1
r1 = i1
r2 = i2
min_c = @_n_seq[i1][i2]
end
end
end
# 結合する対象領域の決定
if sw > 0
sw = 0
for i1 in 0 ... @_n_p_y
for i2 in 0 ... @_n_p_x
if @_state[i1][i2] == 0 && (i1 != r1 || i2 != r2)
# 節点の数>2
if @_n_seq[r1][r2] > 1
for i3 in 0 ... @_n_seq[r1][r2]
k1 = @_seq[r1][r2][i3]
if i3 == @_n_seq[r1][r2]-1
k2 = @_seq[r1][r2][0]
else
k2 = @_seq[r1][r2][i3+1]
end
wd1 = @_rg[k1][k2]
for i4 in 0 ... @_n_seq[i1][i2]
k3 = @_seq[i1][i2][i4]
if i4 == @_n_seq[i1][i2]-1
k4 = @_seq[i1][i2][0]
else
k4 = @_seq[i1][i2][i4+1]
end
wd = wd1 + @_rg[k3][k4]
wa1 = @_rg[k1][k3] + @_rg[k2][k4]
wa2 = @_rg[k1][k4] + @_rg[k2][k3]
if sw == 0 || wa1-wd < min
min = wa1 - wd
r3 = i1
r4 = i2
if i3 == @_n_seq[r1][r2]-1
s1 = 0
else
s1 = i3 + 1
end
if i4 == @_n_seq[i1][i2]-1
s2 = 0
else
s2 = i4 + 1
end
sw = -1
end
if sw == 0 || wa2-wd < min
min = wa2 - wd
r3 = i1
r4 = i2
s1 = i3
if i4 == @_n_seq[i1][i2]-1
s2 = 0
else
s2 = i4 + 1
end
sw = 1
end
end
end
# 節点の数=1
else
k1 = @_seq[r1][r2][0]
if @_n_seq[i1][i2] > 1
for i4 in 0 ... @_n_seq[i1][i2]
k3 = @_seq[i1][i2][i4]
if i4 == @_n_seq[i1][i2]-1
k4 = @_seq[i1][i2][0]
else
k4 = @_seq[i1][i2][i4+1]
end
wd = @_rg[k3][k4]
wa1 = @_rg[k1][k3] + @_rg[k1][k4]
if sw == 0 || wa1-wd < min
min = wa1 - wd
r3 = i1
r4 = i2
s1 = 0
if i4 == @_n_seq[i1][i2]-1
s2 = 0
else
s2 = i4 + 1
end
sw = 1
end
end
else
k3 = @_seq[i1][i2][0]
wa1 = @_rg[k1][k3]
if sw == 0 || wa1 < min
min = wa1
r3 = i1
r4 = i2
s1 = 0
s2 = 0
sw = 1
end
end
end
end
end
end
# 領域の結合
@_seq_w1[0] = @_seq[r1][r2][s1]
k = 1
n = s2
for i1 in 0 ... @_n_seq[r3][r4]
@_seq_w1[k] = @_seq[r3][r4][n]
k += 1
n += 1
if n > @_n_seq[r3][r4]-1
n = 0
end
end
if sw > 0
n = s1 + 1
for i1 in 0 ... @_n_seq[r1][r2]-1
if n > @_n_seq[r1][r2]-1
n = 0
end
@_seq_w1[k] = @_seq[r1][r2][n]
k += 1
n += 1
end
else
n = s1 - 1
for i1 in 0 ... @_n_seq[r1][r2]-1
if n < 0
n = @_n_seq[r1][r2] - 1
end
@_seq_w1[k] = @_seq[r1][r2][n]
k += 1
n -= 1
end
end
# 状態の変更
@_n_seq[r1][r2] += @_n_seq[r3][r4]
@_state[r3][r4] = 1
for i1 in 0 ... @_n_seq[r1][r2]
@_seq[r1][r2][i1] = @_seq_w1[i1]
end
sw = 1
end
end
end
if @_seisu > -2
r = Integer(kyori(@_n_city, @_seq_w1, @_rg))
else
r = kyori(@_n_city, @_seq_w1, @_rg).round()
end
@_max = r
return r
end
attr("_out_m", true)
attr("_o_file", true)
attr("_max", true)
end
# 入力ミス
if ARGV[0] == nil
print("***error ファイル名を入力して下さい\n")
# 入力OK
else
# 問題数と入力データファイル名
line = gets()
a = line.split(" ")
nm = Integer(a[1])
aa = Array.new(nm)
for i0 in 0 ... nm
aa[i0] = gets()
end
for i0 in 0 ... nm
# 各問題の実行
a = aa[i0].split(" ")
i_file = a[1]
n = Integer(a[3])
pt = Partition.new(i_file)
mean = 0.0
max = -1
# 乱数の初期値を変える
for i1 in 0 ... n
print("\n+++++問題 " + i_file + " +++++\n")
srand(1000 * i1 + 1234567);
# 最適化
pt.Optimize()
# 最適値とその平均の計算
mean += pt._max
if max < 0 or pt._max < max
max = pt._max
end
end
# 結果
if pt._out_m <= 0
print(" -----最小 " + String(max) + " 平均 " + String(mean/n) + "-----\n")
else
out = open(pt._o_file, "a")
out = open("out.txt", "a")
printf(out, " -----最小 " + String(max) + " 平均 " + String(mean/n) + "-----\n")
out.close()
end
end
end
=begin
------------------------ケーススタディデータ(data.txt)------
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
---------------------データファイル(data1.txt)------------
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
---------------------データファイル(data2.txt)------------
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
=end
# -*- coding: UTF-8 -*-
import numpy as np
import sys
from math import *
from random import *
from datetime import *
#################################
# 距離の計算
# n_c : 都市の数
# p : 都市番号
# rg : 都市間の距離
# return : 距離
#################################
def kyori(n_c, p, rg) :
r = 0.0
n1 = p[0]
for i1 in range(1, n_c) :
n2 = p[i1]
r += rg[n1][n2]
n1 = n2
n2 = p[0]
r += rg[n1][n2]
return r
#########################
# クラスIterationの定義
#########################
class Iteration :
###################################
# コンストラクタ
# n_city_i : 都市の数
# max_try_i : 最大試行回数
# sei_i : 整数 or 実数
# sel_i : エッジの選択方法
# neib_i : 近傍
# fix_i : 近傍の扱い方
# out_lvl_i : 出力レベル
# out_m_i : 出力方法
# out_d_i : 表示間隔
# o_file_i : 出力ファイル名
# city_i : 都市の位置データ
###################################
def __init__(self, n_city_i, max_tri_i, sei_i, sel_i, neib_i, fix_i, out_lvl_i, out_m_i, out_d_i, o_file_i, city_i) :
# 値の設定
self.n_city = n_city_i # 都市の数
self.max_try = max_tri_i # 最大試行回数
self.seisu = sei_i # 位置データの表現方法
# =1 : 整数
# =-1 : 実数(距離を整数計算)
# =-2 : 実数(距離を実数計算)
self.sel = sel_i # エッジの選択方法
# =0 : 最良のものを選択
# =1 : 最初のものを選択
self.neib = neib_i # 近傍(2 or 3)
self.fix = fix_i # =1 : 近傍を固定
# =0 : 近傍を可変
self.out_lvl = out_lvl_i # 出力レベル
# =0 : 最終出力だけ
# n>0 : n世代毎に出力(負の時はファイル)
self.out_m = out_m_i # 出力方法
# =-1 : 出力しない
# =0 : すべてを出力
# =1 : 評価値だけを出力(最終結果だけはすべてを出力)
self.out_d = out_d_i # 表示間隔
self.o_file = o_file_i # 出力ファイル名
self.city = city_i # 都市の位置データ
# 距離テーブルの作成
self.rg = np.empty((self.n_city, self.n_city), np.float)
for i1 in range(0, self.n_city-1) :
for i2 in range(i1+1, self.n_city) :
x = self.city[i2][0] - self.city[i1][0]
y = self.city[i2][1] - self.city[i1][1]
self.rg[i1][i2] = sqrt(x * x + y * y)
if self.seisu > -2 :
self.rg[i1][i2] = floor(self.rg[i1][i2] + 0.5)
for i1 in range(1, self.n_city) :
for i2 in range(0, i1) :
self.rg[i1][i2] = self.rg[i2][i1]
# 都市を訪れる順序(初期設定)
self.seq = np.empty(self.n_city, np.int)
self.seq_w1 = np.empty(self.n_city, np.int)
self.seq_w2 = np.empty(self.n_city, np.int)
self.seq_w3 = np.empty(self.n_city, np.int)
self.seq_w4 = np.empty(self.n_city, np.int)
self.seq_w5 = np.empty(self.n_city, np.int)
for i1 in range(0, self.n_city) :
sw = 0
while sw == 0 :
ct = int(random() * self.n_city)
if ct >= self.n_city :
ct = self.n_city - 1
self.seq[i1] = ct
sw = 1
for i2 in range(0, i1) :
if ct == self.seq[i2] :
sw = 0
break
################
# 最適化の実行
################
def Optimize (self) :
# 初期設定
n_tri = 0
max = np.empty(1, np.float)
max[0] = kyori(self.n_city, self.seq, self.rg)
if self.out_m >= 0 and abs(self.out_lvl) > 0 :
if self.seisu > -2 :
print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0])))
else :
print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0]))
self.Output(self.out_lvl, n_tri, max[0])
# 実行
sw = 1
for n_tri in range(1, self.max_try+1) :
# 改善
sw = self.Change(max)
# 出力
if self.out_d > 0 and n_tri%self.out_d == 0 :
if self.seisu > -2 :
print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0])))
else :
print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0]))
if self.out_m >= 0 and abs(self.out_lvl) > 0 :
if n_tri%abs(self.out_lvl) == 0 :
self.Output(self.out_lvl, n_tri, max[0])
if sw <= 0 :
break
# 最終出力
if self.out_m >= 0 :
n_tri -= 1
if self.seisu > -2 :
print("***試行回数 " + str(n_tri) + " 距離 " + str(int(max[0])))
else :
print("***試行回数 " + str(n_tri) + " 距離 " + str(max[0]))
self.Output(self.out_lvl, n_tri, max[0])
return n_tri
################################
# 出力
# sw : >=0 : 出力先未定
# <0 : ファイル
# n_tri : 現在の試行回数
# r : 距離
################################
def Output(self, sw, n_tri, r) :
k = 0
if sw >= 0 :
pr = int(input(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? "))
else :
pr = -1
if pr != 0 :
if pr > 0 :
out = sys.stdout
input("")
else :
now = datetime.today().time().isoformat()
out = open(self.o_file, "a")
if self.seisu > -2 :
out.write("***試行回数 " + str(n_tri) + " 距離 " + str(int(r)) + " 時間 " + now + "\n")
else :
out.write("***試行回数 " + str(n_tri) + " 距離 " + str(r) + " 時間 " + now + "\n")
if self.out_m == 0 :
for i1 in range(0, self.n_city) :
n = self.seq[i1]
if self.seisu > 0 :
out.write(" " + str(n) + " " + str(int(self.city[n][0])) + " " + str(int(self.city[n][1])) + "\n")
else :
out.write(" " + str(n) + " " + str(self.city[n][0]) + " " + str(self.city[n][1]) + "\n")
if pr > 0 :
k += 1
if k == pr :
input("")
k = 0
if pr <= 0 :
out.close()
#######################################
# エッジの入れ替え
# r_m : 距離
# return : =0 : 改善がなかった
# =1 : 改善があった
#######################################
def Change(self, r_m) :
max = r_m[0]
max1 = 0.0
ch = 0
k1 = 0
k2 = 0
n1 = 0
n2 = 0
sw = 0
sw1 = 0
# 近傍を可変
if self.fix == 0 :
# 初期設定(k=2)
k = 2
for i1 in range(0, self.n_city) :
self.seq_w4[i1] = self.seq[i1]
self.seq_w3[i1] = 0
# 評価
sw2 = 0
i0 = 0
while i0 < self.n_city-2 and sw2 < 2 :
if i0 == 0 :
n = self.n_city - 1
else :
n = self.n_city
i1 = i0 + 2
while i1 < n and sw2 < 2 :
# 相手の場所
k3 = i1
k4 = k3 + 1
if k4 > self.n_city-1 :
k4 = 0
# 順番の入れ替え
n3 = -1
for i2 in range(0, self.n_city) :
if self.seq_w4[i2] == self.seq[i0+1] :
n3 = i2 + 1
break
nn = n3
n4 = -1
for i2 in range(0, self.n_city) :
if nn > self.n_city-1 :
nn = 0
if self.seq_w4[nn] == self.seq[k3] or self.seq_w4[nn] == self.seq[k4] :
n4 = self.seq_w4[nn]
break
else :
nn += 1
if n4 == self.seq[k4] :
n4 = k3
k3 = k4
k4 = n4
# 評価
self.seq_w1[0] = self.seq[k4]
self.seq_w1[1] = self.seq[i0+1]
n4 = -1
nn = 2
while n4 < 0 :
if n3 > self.n_city-1 :
n3 = 0
self.seq_w1[nn] = self.seq_w4[n3]
if self.seq_w4[n3] == self.seq[k3] :
n4 = 1
nn += 1
n3 += 1
self.seq_w1[nn] = self.seq[i0]
nn += 1
n3 = -1
n4 = -1
for i2 in range(0, self.n_city) :
if self.seq_w4[i2] == self.seq[i0] :
n3 = i2 - 1
if n3 < 0 :
n3 = self.n_city - 1
break
while n4 < 0 :
if self.seq_w4[n3] == self.seq[k4] :
n4 = 1
else :
self.seq_w1[nn] = self.seq_w4[n3]
nn += 1
n3 -= 1
if n3 < 0 :
n3 = self.n_city - 1
r = kyori(self.n_city, self.seq_w1, self.rg)
# 最適値の保存
if sw2 == 0 or r < max1 :
sw2 = 1
max1 = r
n1 = k3
n2 = k4
k1 = i0
k2 = i0 + 1
for i2 in range(0, self.n_city) :
self.seq_w5[i2] = self.seq_w1[i2]
if self.sel > 0 and max1 < max :
sw2 = 2
i1 += 1
i0 += 1
# 最適値の保存と近傍の増加
if sw2 > 0 :
if max1 < max :
sw = 1
max = max1
for i1 in range(0, self.n_city) :
self.seq_w2[i1] = self.seq_w5[i1]
if k < self.neib :
for i1 in range(0, self.n_city) :
self.seq_w4[i1] = self.seq_w5[i1]
self.seq_w3[k1] = 1
self.seq_w3[k2] = 1
self.seq_w3[n1] = 1
self.seq_w3[n2] = 1
k1 = n2
k += 1
else :
sw1 = 1
else :
sw1 = 1
# 実行(k>2)
while sw1 == 0 :
# 評価
sw2 = 0
for i1 in range(0, self.n_city) :
# 相手の場所
k3 = i1
k4 = k3 + 1
if k4 > self.n_city-1 :
k4 = 0
if self.seq_w3[k3] == 0 and self.seq_w3[k4] == 0 :
# 順番の入れ替え
n3 = -1
for i2 in range(0, self.n_city) :
if self.seq_w4[i2] == self.seq[k2] :
n3 = i2 + 1
break
nn = n3
n4 = -1
for i2 in range(0, self.n_city) :
if nn > self.n_city-1 :
nn = 0
if self.seq_w4[nn] == self.seq[k3] or self.seq_w4[nn] == self.seq[k4] :
n4 = self.seq_w4[nn]
break
else :
nn += 1
if n4 == self.seq[k4] :
n4 = k3
k3 = k4
k4 = n4
# 評価
self.seq_w1[0] = self.seq[k4]
self.seq_w1[1] = self.seq[k2]
n4 = -1
nn = 2
while n4 < 0 :
if n3 > self.n_city-1 :
n3 = 0
self.seq_w1[nn] = self.seq_w4[n3]
if self.seq_w4[n3] == self.seq[k3] :
n4 = 1
nn += 1
n3 += 1
self.seq_w1[nn] = self.seq[k1]
nn += 1
n3 = -1
n4 = -1
for i2 in range(0, self.n_city) :
if self.seq_w4[i2] == self.seq[k1] :
n3 = i2 - 1
if n3 < 0 :
n3 = self.n_city - 1
break
while n4 < 0 :
if self.seq_w4[n3] == self.seq[k4] :
n4 = 1
else :
self.seq_w1[nn] = self.seq_w4[n3]
nn += 1
n3 -= 1
if n3 < 0 :
n3 = self.n_city - 1
r = kyori(self.n_city, self.seq_w1, self.rg)
# 最適値の保存
if sw2 == 0 or r < max1 :
sw2 = 1
max1 = r
n1 = k3
n2 = k4
for i2 in range(0, self.n_city) :
self.seq_w5[i2] = self.seq_w1[i2]
# 最適値の保存と近傍の増加
if sw2 > 0 :
if max1 < max :
sw = 1
max = max1
for i1 in range(0, self.n_city) :
self.seq_w2[i1] = self.seq_w5[i1]
if k < self.neib :
for i1 in range(0, self.n_city) :
self.seq_w4[i1] = self.seq_w5[i1]
self.seq_w3[n1] = 1
self.seq_w3[n2] = 1
k1 = n2
k += 1
else :
sw1 = 1
else :
sw1 = 1
# 近傍を固定
else :
n3 = int(random() * (self.n_city - 2))
if n3 > self.n_city-3 :
n3 = self.n_city - 3
# 2近傍
i1 = 0
while i1 <= self.n_city-3 and ch == 0 :
if n3 == 0 :
n1 = self.n_city - 2
else :
n1 = self.n_city - 1
i2 = n3 + 2
while i2 <= n1 and ch == 0 :
# 枝の場所((n3,n3+1), (k1,k2))
k1 = i2
if i2 == self.n_city-1 :
k2 = 0
else :
k2 = i2 + 1
# 枝の入れ替え
self.seq_w1[0] = self.seq[n3]
k = 1
for i3 in range(k1, n3, -1) :
self.seq_w1[k] = self.seq[i3]
k += 1
nn = k2
while nn != n3 :
self.seq_w1[k] = self.seq[nn]
k += 1
nn += 1
if nn > self.n_city-1 :
nn = 0
# 評価
r = kyori(self.n_city, self.seq_w1, self.rg)
if r < max :
max = r
sw = 1
for i3 in range(0, self.n_city) :
self.seq_w2[i3] = self.seq_w1[i3]
if self.sel > 0 :
ch = 1
i2 += 1
n3 += 1
if n3 > self.n_city-3 :
n3 = 0
i1 += 1
# 3近傍
if self.neib == 3 and ch == 0 :
i1 = 0
while i1 <= self.n_city-3 and ch == 0 :
n1 = self.n_city - 2
n2 = self.n_city - 1
i2 = n3 + 1
while i2 <= n1 and ch == 0 :
i3 = i2 + 1
while i3 <= n2 and ch == 0 :
# 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3
if i3 == self.n_city-1 :
k2 = 0
else :
k2 = i3 + 1
# 枝の入れ替えと評価
# 入れ替え(その1)
self.seq_w1[0] = self.seq[n3]
k = 1
for i4 in range(i2, n3, -1) :
self.seq_w1[k] = self.seq[i4]
k += 1
for i4 in range(k1, i2, -1) :
self.seq_w1[k] = self.seq[i4]
k += 1
nn = k2
while nn != n3 :
self.seq_w1[k] = self.seq[nn]
k += 1
nn += 1
if nn > self.n_city-1 :
nn = 0
# 評価(その1)
r = kyori(self.n_city, self.seq_w1, self.rg)
if r < max :
max = r
sw = 1
for i3 in range(0, self.n_city) :
self.seq_w2[i3] = self.seq_w1[i3]
if self.sel > 0 :
ch = 1
# 入れ替え(その2)
self.seq_w1[0] = self.seq[n3]
k = 1
for i4 in range(k1, i2, -1) :
self.seq_w1[k] = self.seq[i4]
k += 1
for i4 in range(n3+1, i2+1) :
self.seq_w1[k] = self.seq[i4]
k += 1
nn = k2
while nn != n3 :
self.seq_w1[k] = self.seq[nn]
k += 1
nn += 1
if nn > self.n_city-1 :
nn = 0
# 評価(その2)
r = kyori(self.n_city, self.seq_w1, self.rg)
if r < max :
max = r
sw = 1
for i3 in range(0, self.n_city) :
self.seq_w2[i3] = self.seq_w1[i3]
if self.sel > 0 :
ch = 1
# 入れ替え(その3)
self.seq_w1[0] = self.seq[n3]
k = 1
for i4 in range(i2+1, k1+1) :
self.seq_w1[k] = self.seq[i4]
k += 1
for i4 in range(i2, n3, -1) :
self.seq_w1[k] = self.seq[i4]
k += 1
nn = k2
while nn != n3 :
self.seq_w1[k] = self.seq[nn]
k += 1
nn += 1
if nn > self.n_city-1 :
nn = 0
# 評価(その3)
r = kyori(self.n_city, self.seq_w1, self.rg)
if r < max :
max = r
sw = 1
for i3 in range(0, self.n_city) :
self.seq_w2[i3] = self.seq_w1[i3]
if self.sel > 0 :
ch = 1
# 入れ替え(その4)
self.seq_w1[0] = self.seq[n3]
k = 1
for i4 in range(i2+1, k1+1) :
self.seq_w1[k] = self.seq[i4]
k += 1
for i4 in range(n3+1, i2+1) :
self.seq_w1[k] = self.seq[i4]
k += 1
nn = k2
while nn != n3 :
self.seq_w1[k] = self.seq[nn]
k += 1
nn += 1
if nn > self.n_city-1 :
nn = 0
# 評価(その4)
r = kyori(self.n_city, self.seq_w1, self.rg)
if r < max :
max = r
sw = 1
for i3 in range(0, self.n_city) :
self.seq_w2[i3] = self.seq_w1[i3]
if self.sel > 0 :
ch = 1
i3 += 1
i2 += 1
n3 += 1
if n3 > self.n_city-3 :
n3 = 0
i1 += 1
# 設定
if sw > 0 :
r_m[0] = max
for i1 in range(0, self.n_city) :
self.seq[i1] = self.seq_w2[i1]
return sw
#########################
# クラスPartitionの定義
#########################
class Partition :
##########################
# コンストラクタ
# name : ファイル名
##########################
def __init__(self, name) :
max = 0
# ファイルのオープン
self.i_file = name # 入力ファイル名
inn = open(name, "r")
# 基本データ
s = inn.readline().split()
self.n_city = int(s[1]) # 都市の数
self.sel = int(s[3]) # エッジの選択方法
# =0 : 最良のものを選択
# =1 : 最初のものを選択
self.neib = int(s[5]) # 近傍(2 or 3)
self.seisu = int(s[7]) # 位置データの表現方法
# =1 : 整数
# =-1 : 実数(距離を整数計算)
# =-2 : 実数(距離を実数計算)
s = inn.readline().split()
self.out_m = int(s[1]) # 出力方法
# =-1 : ディスプレイ(経路長だけ)
# =0 : ディスプレイ
# =1 : ファイル
# =2 : ファイル(経路長だけ)
self.o_file = ""
if self.out_m > 0 :
self.o_file = s[3]
s = inn.readline().split()
self.n_p_x = int(s[2]) # x軸方向の分割数
self.n_p_y = int(s[4]) # y軸方向の分割数
self.max_try = int(s[6]) # 最大試行回数
self.fix = 1 # =1 : 近傍を固定
# =0 : 近傍を可変
if self.neib < 0 :
self.neib = -self.neib
self.fix = 0
# 都市の位置データ
self.city = np.empty((self.n_city, 2), np.float)
for i1 in range(0, self.n_city) :
s = inn.readline().split()
self.city[i1][0] = float(s[0])
self.city[i1][1] = float(s[1])
# ファイルのクローズ
inn.close()
# 距離テーブルの作成
self.rg = np.empty((self.n_city, self.n_city), np.float) # 都市間の距離
for i1 in range(0, self.n_city) :
for i2 in range(i1+1, self.n_city) :
x = self.city[i2][0] - self.city[i1][0]
y = self.city[i2][1] - self.city[i1][1]
self.rg[i1][i2] = sqrt(x * x + y * y)
if self.seisu > -2 :
self.rg[i1][i2] = floor(rg[i1][i2] + 0.5)
for i1 in range(0, self.n_city) :
for i2 in range(0, i1) :
self.rg[i1][i2] = self.rg[i2][i1]
# 作業領域
self.state = np.empty((self.n_p_y, self.n_p_x), np.int) # 領域結合用ワーク
self.n_seq = np.empty((self.n_p_y, self.n_p_x), np.int) # 各領域の都市数
self.n_seq1 = np.empty((self.n_p_y, self.n_p_x), np.int) # 各領域の都市数(ワーク)
self.seq_w1 = np.zeros(self.n_city, np.int) # 作業領域
self.seq_w2 = np.empty(self.n_city, np.int) # 作業領域
self.p_x = np.empty(self.n_p_x, np.float) # x軸の分割点
self.p_y = np.empty(self.n_p_y, np.float) # y軸の分割点
# 都市の分割
min_x = self.city[0][0]
max_x = self.city[0][0]
min_y = self.city[0][1]
max_y = self.city[0][1]
for i1 in range(1, self.n_city) :
if self.city[i1][0] < min_x :
min_x = self.city[i1][0]
else :
if self.city[i1][0] > max_x :
max_x = self.city[i1][0]
if self.city[i1][1] < min_y :
min_y = self.city[i1][1]
else :
if self.city[i1][1] > max_y :
max_y = self.city[i1][1]
s_x = (max_x - min_x) / self.n_p_x
self.p_x[0] = min_x + s_x
self.p_x[self.n_p_x-1] = max_x
for i1 in range(1, self.n_p_x-1) :
self.p_x[i1] = self.p_x[0] + i1 * s_x
s_y = (max_y - min_y) / self.n_p_y
self.p_y[0] = min_y + s_y
self.p_y[self.n_p_y-1] = max_y
for i1 in range(1, self.n_p_y-1) :
self.p_y[i1] = self.p_y[0] + i1 * s_y
self.seq = np.empty((self.n_p_y, self.n_p_x, self.n_city), np.int) # 経路
self.seq1 = np.empty((self.n_p_y, self.n_p_x, self.n_city), np.int) # 経路(ワーク)
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
n = 0
for i3 in range(0, self.n_city) :
if self.seq_w1[i3] == 0 :
if self.city[i3][0] <= self.p_x[i2] and self.city[i3][1] <= self.p_y[i1] :
self.seq_w1[i3] = 1
self.seq_w2[n] = i3
n += 1
self.n_seq1[i1][i2] = n
if n > 0 :
for i3 in range(0, n) :
self.seq1[i1][i2][i3] = self.seq_w2[i3]
if n > max :
max = n
# 作業領域
print("最大都市数 " + str(max))
self.city_i = np.empty((max, 2), np.float) # 都市の位置データ(作業領域)
self.Max = 0 # 最適経路の長さ
##################
# 最適化の実行
##################
def Optimize(self) :
r = 0
# 分割数と開始時間の出力
if self.out_m > 0 :
self.Output(0, r)
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
self.n_seq[i1][i2] = self.n_seq1[i1][i2]
for i3 in range(0, self.n_seq1[i1][i2]) :
self.seq[i1][i2][i3] = self.seq1[i1][i2][i3]
# 分割毎の最適化
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
if self.n_seq[i1][i2] > 3 :
# 近傍の大きさ
if self.n_seq[i1][i2] > 3 :
nb = self.neib
else :
nb = 2
# 都市位置データの設定
for i3 in range(0, self.n_seq[i1][i2]) :
k = self.seq[i1][i2][i3]
self.city_i[i3][0] = self.city[k][0]
self.city_i[i3][1] = self.city[k][1]
# 最適化
it = Iteration(self.n_seq[i1][i2], self.max_try, self.seisu, self.sel, nb, self.fix, 0, -1, 0, self.o_file, self.city_i)
max = it.Optimize()
# 結果の保存
for i3 in range(0, self.n_seq[i1][i2]) :
k = it.seq[i3]
self.seq_w1[i3] = self.seq[i1][i2][k]
for i3 in range(0, self.n_seq[i1][i2]) :
self.seq[i1][i2][i3] = self.seq_w1[i3]
# 出力
if self.seisu > -2 :
r = int(kyori(self.n_seq[i1][i2], self.seq[i1][i2], self.rg))
else :
r = floor(kyori(self.n_seq[i1][i2], self.seq[i1][i2], self.rg) + 0.5)
print(" y " + str(i1+1) + " x " + str(i2+1) + " n_city " + str(self.n_seq[i1][i2]) + " range " + str(r) + " (trial " + str(max) + ")")
# 経路の接続
r = self.Connect()
# 出力
self.Output(self.n_city, r)
########################
# 出力
# n_c : 都市の数
# r : 距離
########################
def Output(self, n_c, r) :
k = 0
if self.out_m <= 0 :
out = sys.stdout
print("距離 " + str(r))
input("")
else :
now = datetime.today().time().isoformat()
out = open(self.o_file, "a")
if n_c > 0 :
print("距離 " + str(r))
out.write(" 距離 " + str(r) + " 時間 " + now + "\n")
else :
out.write("問題 " + self.i_file + " 分割 " + str(self.n_p_x) + " " + str(self.n_p_y) + " 時間 " + now + "\n")
if n_c > 0 and (self.out_m == 0 or self.out_m == 1) :
for i1 in range(0, n_c) :
n = self.seq_w1[i1]
if self.seisu > 0 :
out.write(" " + str(n) + " " + str(int(self.city[n][0])) + " " + str(int(self.city[n][1])) + "\n")
else :
out.write(" " + str(n) + " " + str(self.city[n][0]) + " " + str(self.city[n][1]) + "\n")
if self.out_m == 0 :
k += 1
if k == 10 :
input("")
k = 0
if self.out_m > 0 :
out.close()
########################
# 分割された領域の接続
########################
def Connect(self) :
min = 0
k1 = 0
k2 = 0
k3 = 0
k4 = 0
min_c = 0
r1 = 0
r2 = 0
r3 = 0
r4 = 0
s1 = 0
s2 = 0
sw = 1
# 領域が1つの場合
if self.n_p_x == 1 and self.n_p_y == 1 :
for i1 in range(0, self.n_seq[0][0]) :
self.seq_w1[i1] = self.seq[0][0][i1]
# 初期設定
else :
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
if self.n_seq[i1][i2] > 0 :
self.state[i1][i2] = 0
else :
self.state[i1][i2] = 1
# 実行
while sw > 0 :
# 最小節点領域
min_c = self.n_city
sw = 0
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
if self.state[i1][i2] == 0 and self.n_seq[i1][i2] < min_c :
sw = 1
r1 = i1
r2 = i2
min_c = self.n_seq[i1][i2]
# 結合する対象領域の決定
if sw > 0 :
sw = 0
for i1 in range(0, self.n_p_y) :
for i2 in range(0, self.n_p_x) :
if self.state[i1][i2] == 0 and (i1 != r1 or i2 != r2) :
# 節点の数>2
if self.n_seq[r1][r2] > 1 :
for i3 in range(0, self.n_seq[r1][r2]) :
k1 = self.seq[r1][r2][i3]
if i3 == self.n_seq[r1][r2]-1 :
k2 = self.seq[r1][r2][0]
else :
k2 = self.seq[r1][r2][i3+1]
wd1 = self.rg[k1][k2]
for i4 in range(0, self.n_seq[i1][i2]) :
k3 = self.seq[i1][i2][i4]
if i4 == self.n_seq[i1][i2]-1 :
k4 = self.seq[i1][i2][0]
else :
k4 = self.seq[i1][i2][i4+1]
wd = wd1 + self.rg[k3][k4]
wa1 = self.rg[k1][k3] + self.rg[k2][k4]
wa2 = self.rg[k1][k4] + self.rg[k2][k3]
if sw == 0 or wa1-wd < min :
min = wa1 - wd
r3 = i1
r4 = i2
if i3 == self.n_seq[r1][r2]-1 :
s1 = 0
else :
s1 = i3 + 1
if i4 == self.n_seq[i1][i2]-1 :
s2 = 0
else :
s2 = i4 + 1
sw = -1
if sw == 0 or wa2-wd < min :
min = wa2 - wd
r3 = i1
r4 = i2
s1 = i3
if i4 == self.n_seq[i1][i2]-1 :
s2 = 0
else :
s2 = i4 + 1
sw = 1
# 節点の数=1
else :
k1 = self.seq[r1][r2][0]
if self.n_seq[i1][i2] > 1 :
for i4 in range(0, self.n_seq[i1][i2]) :
k3 = self.seq[i1][i2][i4]
if i4 == self.n_seq[i1][i2]-1 :
k4 = self.seq[i1][i2][0]
else :
k4 = self.seq[i1][i2][i4+1]
wd = self.rg[k3][k4]
wa1 = self.rg[k1][k3] + self.rg[k1][k4]
if sw == 0 or wa1-wd < min :
min = wa1 - wd
r3 = i1
r4 = i2
s1 = 0
if i4 == self.n_seq[i1][i2]-1 :
s2 = 0
else :
s2 = i4 + 1
sw = 1
else :
k3 = self.seq[i1][i2][0]
wa1 = self.rg[k1][k3]
if sw == 0 or wa1 < min :
min = wa1
r3 = i1
r4 = i2
s1 = 0
s2 = 0
sw = 1
# 領域の結合
self.seq_w1[0] = self.seq[r1][r2][s1]
k = 1
n = s2
for i1 in range(0, self.n_seq[r3][r4]) :
self.seq_w1[k] = self.seq[r3][r4][n]
k += 1
n += 1
if n > self.n_seq[r3][r4]-1 :
n = 0
if sw > 0 :
n = s1 + 1
for i1 in range(0, self.n_seq[r1][r2]-1) :
if n > self.n_seq[r1][r2]-1 :
n = 0
self.seq_w1[k] = self.seq[r1][r2][n]
k += 1
n += 1
else :
n = s1 - 1
for i1 in range(0, self.n_seq[r1][r2]-1) :
if n < 0 :
n = self.n_seq[r1][r2] - 1
self.seq_w1[k] = self.seq[r1][r2][n]
k += 1
n -= 1
# 状態の変更
self.n_seq[r1][r2] += self.n_seq[r3][r4]
self.state[r3][r4] = 1
for i1 in range(0, self.n_seq[r1][r2]) :
self.seq[r1][r2][i1] = self.seq_w1[i1]
sw = 1
if self.seisu > -2 :
r = int(kyori(self.n_city, self.seq_w1, self.rg))
else :
r = floor(kyori(self.n_city, self.seq_w1, self.rg) + 0.5)
self.Max = r
return r
################################
# 巡回セールスマン問題(分割法)
# coded by Y.Suganuma
################################
# 入力ミス
if len(sys.argv) <= 1 :
print("***error ファイル名を入力して下さい")
# 入力OK
else :
# ファイルのオープン
inn = open(sys.argv[1], "r")
# 問題数と入力データファイル名
s = inn.readline().split()
nm = int(s[1])
for i0 in range(0, nm) :
# 各問題の実行
s = inn.readline().split()
i_file = s[1]
n = int(s[3])
pt = Partition(i_file)
mean = 0.0
max = -1
# 乱数の初期値を変える
for i1 in range(0, n) :
print("\n+++++問題 " + i_file + " +++++")
seed(1000 * i1 + 1234567);
# 最適化
pt.Optimize()
# 最適値とその平均の計算
mean += pt.Max
if max < 0 or pt.Max < max :
max = pt.Max
# 結果
if pt.out_m <= 0 :
print(" -----最小 " + str(max) + " 平均 " + str(mean/n) + "-----")
else :
out = open(pt.o_file, "a")
out.write(" -----最小 " + str(max) + " 平均 " + str(mean/n) + "-----\n")
out.close()
inn.close()
"""
------------------------ケーススタディデータ(data.txt)------
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
---------------------データファイル(data1.txt)------------
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
---------------------データファイル(data2.txt)------------
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
"""
/****************************/
/* 巡回セールスマン問題 */
/* (分割法) */
/* coded by Y.Suganuma */
/****************************/
using System;
using System.IO;
/*************************/
/* クラスPartitionの定義 */
/*************************/
class Partition {
float [][] rg; // 都市間の距離
float [] p_x; // x軸の分割点
float [] p_y; // y軸の分割点
int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
int max_try; // 最大試行回数
int [] seq_w1; // 作業領域
int [] seq_w2; // 作業領域
int neib; // 近傍(2 or 3)
public int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
Random rn; // 乱数
float [][] city; //都市の位置データ
float [][] city_i; //都市の位置データ(作業領域)
public int Max; // 最適経路の長さ
int n_city; // 都市の数
int [][] n_seq; // 各領域の都市数
int [][] n_seq1; // 各領域の都市数(ワーク)
int n_p_x; // x軸方向の分割数
int n_p_y; // y軸方向の分割数
public int out_m; // 出力方法
// =-1 : ディスプレイ(経路長だけ)
// =0 : ディスプレイ
// =1 : ファイル
// =2 : ファイル(経路長だけ)
int range; // 現在の評価値
int seed; // 乱数の初期値
int [][][] seq; // 経路
int [][][] seq1; // 経路(ワーク)
int [][] state; // 領域結合用ワーク
public String o_file; // 出力ファイル名
String i_file; // 入力ファイル名
/****************************/
/* コンストラクタ */
/* i_file : ファイル名 */
/****************************/
public Partition (String name)
{
i_file = name;
string[] lines = File.ReadAllLines(i_file);
// 基本データ
// 1行目
string[] str = lines[0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
n_city = int.Parse(str[1]);
sel = int.Parse(str[3]);
neib = int.Parse(str[5]);
seisu = int.Parse(str[7]);
if (neib < 0) {
neib = -neib;
fix = 0;
}
else
fix = 1;
// 2行目
str = lines[1].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
out_m = int.Parse(str[1]);
o_file = str[3];
// 3行目
str = lines[2].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
n_p_x = int.Parse(str[2]);
n_p_y = int.Parse(str[4]);
max_try = int.Parse(str[6]);
// 都市の位置データ
city = new float [n_city][];
for (int i1 = 0; i1 < n_city; i1++) {
city[i1] = new float [2];
str = lines[i1+3].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
city[i1][0] = float.Parse(str[0]);
city[i1][1] = float.Parse(str[1]);
}
// 距離テーブルの作成
rg = new float [n_city][];
for (int i1 = 0; i1 < n_city; i1++) {
rg[i1] = new float [n_city];
for (int i2 = i1+1; i2 < n_city; i2++) {
double x = city[i2][0] - city[i1][0];
double y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)Math.Sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (int i1 = 1; i1 < n_city; i1++) {
for (int i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 作業領域
state = new int [n_p_y][];
n_seq = new int [n_p_y][];
n_seq1 = new int [n_p_y][];
for (int i1 = 0; i1 < n_p_y; i1++) {
state[i1] = new int [n_p_x];
n_seq[i1] = new int [n_p_x];
n_seq1[i1] = new int [n_p_x];
}
seq = new int [n_p_y][][];
seq1 = new int [n_p_y][][];
for (int i1 = 0; i1 < n_p_y; i1++) {
seq[i1] = new int [n_p_x][];
seq1[i1] = new int [n_p_x][];
for (int i2 = 0; i2 < n_p_x; i2++) {
seq[i1][i2] = new int [n_city];
seq1[i1][i2] = new int [n_city];
}
}
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
p_x = new float [n_p_x];
p_y = new float [n_p_y];
// 都市の分割
for (int i1 = 0; i1 < n_city; i1++)
seq_w1[i1] = 0;
float min_x = city[0][0];
float max_x = city[0][0];
float min_y = city[0][1];
float max_y = city[0][1];
for (int i1 = 1; i1 < n_city; i1++) {
if (city[i1][0] < min_x)
min_x = city[i1][0];
else {
if (city[i1][0] > max_x)
max_x = city[i1][0];
}
if (city[i1][1] < min_y)
min_y = city[i1][1];
else {
if (city[i1][1] > max_y)
max_y = city[i1][1];
}
}
float s_x = (max_x - min_x) / n_p_x;
p_x[0] = min_x + s_x;
p_x[n_p_x-1] = max_x;
for (int i1 = 1; i1 < n_p_x-1; i1++)
p_x[i1] = p_x[0] + i1 * s_x;
float s_y = (max_y - min_y) / n_p_y;
p_y[0] = min_y + s_y;
p_y[n_p_y-1] = max_y;
for (int i1 = 1; i1 < n_p_y-1; i1++)
p_y[i1] = p_y[0] + i1 * s_y;
int max = 0;
for (int i1 = 0; i1 < n_p_y; i1++) {
for (int i2 = 0; i2 < n_p_x; i2++) {
int n = 0;
for (int i3 = 0; i3 < n_city; i3++) {
if (seq_w1[i3] == 0) {
if (city[i3][0] <= p_x[i2] && city[i3][1] <= p_y[i1]) {
seq_w1[i3] = 1;
seq_w2[n] = i3;
n++;
}
}
}
n_seq1[i1][i2] = n;
if (n > 0) {
for (int i3 = 0; i3 < n; i3++)
seq1[i1][i2][i3] = seq_w2[i3];
if (n > max)
max = n;
}
}
}
for (int i1 = 0; i1 < n_p_y; i1++) {
for (int i2 = 0; i2 < n_p_x; i2++)
state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1;
}
// 作業領域
Console.WriteLine("最大都市数 " + max);
city_i = new float [max][];
for (int i1 = 0; i1 < max; i1++)
city_i[i1] = new float [2];
}
/******************************/
/* 最適化の実行 */
/* seed_i : 乱数の初期値 */
/******************************/
public void Optimize(int seed_i)
{
// 乱数の初期設定
seed = seed_i;
rn = new Random (seed); // rn.NextDouble();
for (int i1 = 0; i1 < n_p_y; i1++) {
for (int i2 = 0; i2 < n_p_x; i2++) {
n_seq[i1][i2] = n_seq1[i1][i2];
state[i1][i2] = (n_seq1[i1][i2] > 0) ? 0 : 1;
for (int i3 = 0; i3 < n_seq1[i1][i2]; i3++)
seq[i1][i2][i3] = seq1[i1][i2][i3];
}
}
// 分割数と開始時間の出力(ファイルへ出力する場合)
if (out_m > 0)
Output(0);
// 分割毎の最適化
for (int i1 = 0; i1 < n_p_y; i1++) {
for (int i2 = 0; i2 < n_p_x; i2++) {
if (n_seq[i1][i2] > 3) {
// 近傍の大きさ
int nb = (n_seq[i1][i2] > 3) ? neib : 2;
// 都市位置データの設定
for (int i3 = 0; i3 < n_seq[i1][i2]; i3++) {
int k = seq[i1][i2][i3];
city_i[i3][0] = city[k][0];
city_i[i3][1] = city[k][1];
}
// 最適化
Iteration it = new Iteration (n_seq[i1][i2], max_try, seisu,
sel, nb, fix, 0, -1, 0, o_file,
city_i, rn);
int max = it.Optimize();
// 結果の保存
for (int i3 = 0; i3 < n_seq[i1][i2]; i3++) {
int k = it.seq[i3];
seq_w1[i3] = seq[i1][i2][k];
}
for (int i3 = 0; i3 < n_seq[i1][i2]; i3++)
seq[i1][i2][i3] = seq_w1[i3];
// 出力(文字)
int r = (seisu > -2) ?
(int)Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) :
(int)(Iteration.kyori(n_seq[i1][i2], seq[i1][i2], rg) + 0.5);
Console.WriteLine(" y " + (i1+1) + " x " + (i2+1) +
" n_city " + n_seq[i1][i2] +
" range " + r + " (trial " + max + ")");
}
}
}
// 経路の接続
range = Connect();
Max = range;
// 出力(文字)
Output(n_city);
}
/***********************/
/* 出力 */
/* n_c : 都市の数 */
/***********************/
void Output(int n_c)
{
StreamWriter OUT = new StreamWriter(o_file, true);
if (out_m <= 0) {
Console.WriteLine("距離 " + range);
Console.ReadLine();
}
else {
DateTime now = DateTime.Now; // 現在時刻の獲得
if (n_c > 0) {
Console.WriteLine("距離 " + range);
OUT.WriteLine(" 距離 " + range + " 時間 " + now);
}
else
OUT.WriteLine("問題 " + i_file + " 乱数 " + seed + " 分割 " + n_p_x +
" " + n_p_y + " 時間 " + now);
}
int k = 0;
if (n_c > 0 && (out_m == 0 || out_m == 1)) {
for (int i1 = 0; i1 < n_c; i1++) {
int n = seq_w1[i1];
if (out_m > 0) {
if (seisu > 0)
OUT.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
OUT.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]);
}
else {
if (seisu > 0)
Console.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
Console.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]);
}
if (out_m == 0) {
k++;
if (k == 10) {
Console.ReadLine();
k = 0;
}
}
}
}
OUT.Close();
}
/************************/
/* 分割された領域の接続 */
/************************/
int Connect()
{
double wd, wd1, wa1, wa2, min = 0;
int i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3 = 0, k4 = 0, min_c = 0, n, r,
r1 = 0, r2 = 0, r3 = 0, r4 = 0, s1 = 0, s2 = 0, sw = 1;
/*
領域が1つの場合
*/
if (n_p_x == 1 && n_p_y == 1) {
for (i1 = 0; i1 < n_seq[0][0]; i1++)
seq_w1[i1] = seq[0][0][i1];
}
/*
領域が複数の場合
*/
else {
while (sw > 0) {
// 最小節点領域
min_c = n_city;
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && n_seq[i1][i2] < min_c) {
sw = 1;
r1 = i1;
r2 = i2;
min_c = n_seq[i1][i2];
}
}
}
// 結合する対象領域の決定
if (sw > 0) {
sw = 0;
for (i1 = 0; i1 < n_p_y; i1++) {
for (i2 = 0; i2 < n_p_x; i2++) {
if (state[i1][i2] == 0 && (i1 != r1 || i2 != r2)) {
// 節点の数>2
if (n_seq[r1][r2] > 1) {
for (i3 = 0; i3 < n_seq[r1][r2]; i3++) {
k1 = seq[r1][r2][i3];
k2 = (i3 == n_seq[r1][r2]-1) ? seq[r1][r2][0] :
seq[r1][r2][i3+1];
wd1 = rg[k1][k2];
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = wd1 + rg[k3][k4];
wa1 = rg[k1][k3] + rg[k2][k4];
wa2 = rg[k1][k4] + rg[k2][k3];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = (i3 == n_seq[r1][r2]-1) ? 0 : i3 + 1;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = -1;
}
if (sw == 0 || wa2-wd < min) {
min = wa2 - wd;
r3 = i1;
r4 = i2;
s1 = i3;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
}
// 節点の数=1
else {
k1 = seq[r1][r2][0];
if (n_seq[i1][i2] > 1) {
for (i4 = 0; i4 < n_seq[i1][i2]; i4++) {
k3 = seq[i1][i2][i4];
k4 = (i4 == n_seq[i1][i2]-1) ? seq[i1][i2][0] :
seq[i1][i2][i4+1];
wd = rg[k3][k4];
wa1 = rg[k1][k3] + rg[k1][k4];
if (sw == 0 || wa1-wd < min) {
min = wa1 - wd;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = (i4 == n_seq[i1][i2]-1) ? 0 : i4 + 1;
sw = 1;
}
}
}
else {
k3 = seq[i1][i2][0];
wa1 = rg[k1][k3];
if (sw == 0 || wa1 < min) {
min = wa1;
r3 = i1;
r4 = i2;
s1 = 0;
s2 = 0;
sw = 1;
}
}
}
}
}
}
// 領域の結合
seq_w1[0] = seq[r1][r2][s1];
k = 1;
n = s2;
for (i1 = 0; i1 < n_seq[r3][r4]; i1++) {
seq_w1[k] = seq[r3][r4][n];
k++;
n++;
if (n > n_seq[r3][r4]-1)
n = 0;
}
if (sw > 0) {
n = s1 + 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n > n_seq[r1][r2]-1)
n = 0;
seq_w1[k] = seq[r1][r2][n];
k++;
n++;
}
}
else {
n = s1 - 1;
for (i1 = 0; i1 < n_seq[r1][r2]-1; i1++) {
if (n < 0)
n = n_seq[r1][r2] - 1;
seq_w1[k] = seq[r1][r2][n];
k++;
n--;
}
}
// 状態の変更
n_seq[r1][r2] += n_seq[r3][r4];
state[r3][r4] = 1;
for (i1 = 0; i1 < n_seq[r1][r2]; i1++)
seq[r1][r2][i1] = seq_w1[i1];
sw = 1;
}
}
}
r = (seisu > -2) ? (int)Iteration.kyori(n_city, seq_w1, rg) :
(int)(Iteration.kyori(n_city, seq_w1, rg) + 0.5);
return r;
}
}
/*************************/
/* クラスIterationの定義 */
/*************************/
class Iteration {
float [][] rg; // 都市間の距離
int fix; // =1 : 近傍を固定
// =0 : 近傍を可変
int max_try; // 最大試行回数
int neib; // 近傍(2 or 3)
int out_d; // 表示間隔
int [] seq_w1; // 都市を訪れる順序(ワーク)
int [] seq_w2; // 都市を訪れる順序(ワーク)
int [] seq_w3; // 都市を訪れる順序(ワーク)
int [] seq_w4; // 都市を訪れる順序(ワーク)
int [] seq_w5; // 都市を訪れる順序(ワーク)
int out_lvl; // 出力レベル
// =0 : 最終出力だけ
// n>0 : n世代毎に出力(負の時はファイル)
int out_m; // 出力方法
// =-1 : 出力しない
// =0 : すべてを出力
// =1 : 評価値だけを出力(最終結果だけはすべてを出力)
int seisu; // 位置データの表現方法
// =1 : 整数
// =-1 : 実数(距離を整数計算)
// =-2 : 実数(距離を実数計算)
int sel; // エッジの選択方法
// =0 : 最良のものを選択
// =1 : 最初のものを選択
String o_file; // 出力ファイル名
Random rn; // 乱数
double range; // 現在の評価値
float [][] city; //都市の位置データ
int n_city; // 都市の数
int n_tri; // 試行回数
public int [] seq; // 都市を訪れる順序
/**********************************/
/* コンストラクタ */
/* n_city_i : 都市の数 */
/* max_try_i : 最大試行回数 */
/* sei_i : 整数 or 実数 */
/* sel_i : エッジの選択方法 */
/* neib_i : 近傍(2 or 3) */
/* fix_i : 近傍の扱い方 */
/* out_lvl_i : 出力レベル */
/* out_m_i : 出力方法 */
/* out_d_i : 表示間隔 */
/* o_file_i : 出力ファイル名 */
/* city_i : 都市の位置データ */
/* rn_i : 乱数 */
/**********************************/
public Iteration (int n_city_i, int max_tri_i, int sei_i, int sel_i, int neib_i,
int fix_i, int out_lvl_i, int out_m_i, int out_d_i, String o_file_i,
float [][] city_i, Random rn_i)
{
// 値の設定
n_city = n_city_i;
max_try = max_tri_i;
seisu = sei_i;
sel = sel_i;
neib = neib_i;
fix = fix_i;
out_lvl = out_lvl_i;
out_m = out_m_i;
out_d = out_d_i;
o_file = o_file_i;
rn = rn_i;
n_tri = 0;
// 都市の位置データ
city = new float [n_city][];
for (int i1 = 0; i1 < n_city; i1++) {
city[i1] = new float [2];
city[i1][0] = city_i[i1][0];
city[i1][1] = city_i[i1][1];
}
// 距離テーブルの作成
rg = new float [n_city][];
for (int i1 = 0; i1 < n_city; i1++) {
rg[i1] = new float [n_city];
for (int i2 = i1+1; i2 < n_city; i2++) {
double x = city[i2][0] - city[i1][0];
double y = city[i2][1] - city[i1][1];
rg[i1][i2] = (float)Math.Sqrt(x * x + y * y);
if (seisu > -2)
rg[i1][i2] = (int)(rg[i1][i2] + 0.5);
}
}
for (int i1 = 1; i1 < n_city; i1++) {
for (int i2 = 0; i2 < i1; i2++)
rg[i1][i2] = rg[i2][i1];
}
// 都市を訪れる順序(初期設定)
seq = new int [n_city];
seq_w1 = new int [n_city];
seq_w2 = new int [n_city];
seq_w3 = new int [n_city];
seq_w4 = new int [n_city];
seq_w5 = new int [n_city];
for (int i1 = 0; i1 < n_city; i1++) {
int sw = 0;
while (sw == 0) {
int ct = (int)(rn.NextDouble() * n_city);
if (ct >= n_city)
ct = n_city - 1;
seq[i1] = ct;
sw = 1;
for (int i2 = 0; i2 < i1 && sw > 0; i2++) {
if (ct == seq[i2])
sw = 0;
}
}
}
}
/****************/
/* 最適化の実行 */
/****************/
public int Optimize ()
{
int sw;
// 初期設定
range = kyori(n_city, seq, rg);
// 初期状態の出力(文字)
if (out_m >= 0 && Math.Abs(out_lvl) > 0) {
if (seisu > -2)
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range);
else
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + range);
Output(out_lvl);
}
// 実行
sw = 1;
for (n_tri = 1; n_tri <= max_try && sw > 0; n_tri++) {
// 改善
sw = Change();
// 出力(文字)
if (out_d > 0 && n_tri%out_d == 0) {
if (seisu > -2)
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range);
else
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + range);
}
if (out_m >= 0 && Math.Abs(out_lvl) > 0) {
if (n_tri%Math.Abs(out_lvl) == 0)
Output(out_lvl);
}
}
// 最終出力(文字)
if (out_m >= 0) {
n_tri--;
if (seisu > -2)
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range);
else
Console.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5));
Output(out_lvl);
}
return n_tri;
}
/*******************************/
/* 出力 */
/* sw : >= 0 : 出力先未定 */
/* < 0 : ファイル */
/*******************************/
void Output(int sw)
{
int pr = -1;
if (sw >= 0) {
Console.Write(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ");
pr = int.Parse(Console.ReadLine());
}
if (pr != 0) {
StreamWriter OUT = new StreamWriter(o_file, true);
if (pr < 0) {
DateTime now = DateTime.Now; // 現在時刻の獲得
if (seisu > -2)
OUT.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)range + " 時間 " + now);
else
OUT.WriteLine("***試行回数 " + n_tri + " 距離 " + (int)(range+0.5) +
" 時間 " + now);
}
if (out_m == 0) {
int k = 0;
for (int i1 = 0; i1 < n_city; i1++) {
int n = seq[i1];
if (pr < 0) {
if (seisu > 0)
OUT.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
OUT.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]);
}
else {
if (seisu > 0)
Console.WriteLine(" " + n + " " + (int)city[n][0] + " " + (int)city[n][1]);
else
Console.WriteLine(" " + n + " " + city[n][0] + " " + city[n][1]);
}
if (pr > 0) {
k++;
if (k == pr) {
Console.ReadLine();
k = 0;
}
}
}
}
OUT.Close();
}
}
/**************************************/
/* エッジの入れ替え */
/* return : =0 : 改善がなかった */
/* =1 : 改善があった */
/**************************************/
int Change()
{
double max, max1 = 0.0, r;
int ch = 0, i0, i1, i2, i3, i4, k, k1 = 0, k2 = 0, k3, k4,
n, nn, n1 = 0, n2 = 0, n3, n4, sw = 0, sw1 = 0, sw2;
max = range;
//
// 近傍を可変
//
if (fix == 0) {
// 初期設定(k=2)
k = 2;
for (i1 = 0; i1 < n_city; i1++) {
seq_w4[i1] = seq[i1];
seq_w3[i1] = 0;
}
// 評価
sw2 = 0;
for (i0 = 0; i0 < n_city-2 && sw2 < 2; i0++) {
n = (i0 == 0) ? n_city-1 : n_city;
for (i1 = i0+2; i1 < n && sw2 < 2; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0+1])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[i0+1];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[i0];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[i0]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
k1 = i0;
k2 = i0 + 1;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
if (sel > 0 && max1 < max)
sw2 = 2;
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[k1] = 1;
seq_w3[k2] = 1;
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
// 実行(k>2)
while (sw1 == 0) {
// 評価
sw2 = 0;
for (i1 = 0; i1 < n_city; i1++) {
// 相手の場所
k3 = i1;
k4 = k3 + 1;
if (k4 > n_city-1)
k4 = 0;
if (seq_w3[k3] == 0 && seq_w3[k4] == 0) {
// 順番の入れ替え
n3 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k2])
n3 = i2 + 1;
}
nn = n3;
n4 = -1;
for (i2 = 0; i2 < n_city && n4 < 0; i2++) {
if (nn > n_city-1)
nn = 0;
if (seq_w4[nn] == seq[k3] || seq_w4[nn] == seq[k4])
n4 = seq_w4[nn];
else
nn++;
}
if (n4 == seq[k4]) {
n4 = k3;
k3 = k4;
k4 = n4;
}
// 評価
seq_w1[0] = seq[k4];
seq_w1[1] = seq[k2];
n4 = -1;
nn = 2;
while (n4 < 0) {
if (n3 > n_city-1)
n3 = 0;
seq_w1[nn] = seq_w4[n3];
if (seq_w4[n3] == seq[k3])
n4 = 1;
nn++;
n3++;
}
seq_w1[nn] = seq[k1];
nn++;
n3 = -1;
n4 = -1;
for (i2 = 0; i2 < n_city && n3 < 0; i2++) {
if (seq_w4[i2] == seq[k1]) {
n3 = i2 - 1;
if (n3 < 0)
n3 = n_city - 1;
}
}
while (n4 < 0) {
if (seq_w4[n3] == seq[k4])
n4 = 1;
else {
seq_w1[nn] = seq_w4[n3];
nn++;
n3--;
if (n3 < 0)
n3 = n_city - 1;
}
}
r = kyori(n_city, seq_w1, rg);
// 最適値の保存
if (sw2 == 0 || r < max1) {
sw2 = 1;
max1 = r;
n1 = k3;
n2 = k4;
for (i2 = 0; i2 < n_city; i2++)
seq_w5[i2] = seq_w1[i2];
}
}
}
// 最適値の保存と近傍の増加
if (sw2 > 0) {
if (max1 < max) {
sw = 1;
max = max1;
for (i1 = 0; i1 < n_city; i1++)
seq_w2[i1] = seq_w5[i1];
}
if (k < neib) {
for (i1 = 0; i1 < n_city; i1++)
seq_w4[i1] = seq_w5[i1];
seq_w3[n1] = 1;
seq_w3[n2] = 1;
k1 = n2;
k++;
}
else
sw1 = 1;
}
else
sw1 = 1;
}
}
//
// 近傍を固定
//
else {
n3 = (int)(rn.NextDouble() * (n_city - 2));
if (n3 > n_city-3)
n3 = n_city - 3;
// 2近傍
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
if (n3 == 0)
n1 = n_city - 2;
else
n1 = n_city - 1;
for (i2 = n3+2; i2 <= n1 && ch == 0; i2++) {
// 枝の場所((n3,n3+1), (k1,k2))
k1 = i2;
if (i2 == n_city-1)
k2 = 0;
else
k2 = i2 + 1;
// 枝の入れ替え
seq_w1[0] = seq[n3];
k = 1;
for (i3 = k1; i3 >= n3+1; i3--) {
seq_w1[k] = seq[i3];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
// 3近傍
if (neib == 3 && ch == 0) {
for (i1 = 0; i1 <= n_city-3 && ch == 0; i1++) {
n1 = n_city - 2;
n2 = n_city - 1;
for (i2 = n3+1; i2 <= n1 && ch == 0; i2++) {
for (i3 = i2+1; i3 <= n2 && ch == 0; i3++) {
// 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3;
if (i3 == n_city-1)
k2 = 0;
else
k2 = i3 + 1;
// 枝の入れ替えと評価
// 入れ替え(その1)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その1)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その2)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = k1; i4 >= i2+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その2)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その3)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = i2; i4 >= n3+1; i4--) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その3)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
// 入れ替え(その4)
seq_w1[0] = seq[n3];
k = 1;
for (i4 = i2+1; i4 <= k1; i4++) {
seq_w1[k] = seq[i4];
k++;
}
for (i4 = n3+1; i4 <= i2; i4++) {
seq_w1[k] = seq[i4];
k++;
}
nn = k2;
while (nn != n3) {
seq_w1[k] = seq[nn];
k++;
nn++;
if (nn > n_city-1)
nn = 0;
}
// 評価(その4)
r = kyori(n_city, seq_w1, rg);
if (r < max) {
max = r;
sw = 1;
for (i3 = 0; i3 < n_city; i3++)
seq_w2[i3] = seq_w1[i3];
if (sel > 0)
ch = 1;
}
}
}
n3++;
if (n3 > n_city-3)
n3 = 0;
}
}
}
// 設定
if (sw > 0) {
range = max;
for (i1 = 0; i1 < n_city; i1++)
seq[i1] = seq_w2[i1];
}
return sw;
}
/*********************************/
/* 距離の計算 */
/* n_c : 都市の数 */
/* p : 都市番号 */
/* rg : 都市間の距離 */
/* return : 距離 */
/*********************************/
public static float kyori(int n_c, int [] p, float [][] rg)
{
float range = 0;
int n1 = p[0], n2;
for (int i1 = 1; i1 < n_c; i1++) {
n2 = p[i1];
range += rg[n1][n2];
n1 = n2;
}
n2 = p[0];
range += rg[n1][n2];
return range;
}
}
class Program
{
static void Main(String[] args)
{
// 入力ミス
if (args.Length == 0)
Console.WriteLine("***error ケーススタディファイル名を入力して下さい");
// 入力OK
else {
// 入力データファイル名と問題数
String[] lines = File.ReadAllLines(args[0]);
String[] str = lines[0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
int nm = int.Parse(str[1]); // 問題の数
for (int i0 = 1; i0 <= nm; i0++) {
// 各問題の実行
str = lines[i0].Split(new char[] {' '}, StringSplitOptions.RemoveEmptyEntries);
String i_file = str[1]; // データファイル名
int n = int.Parse(str[3]); // 繰り返し回数
Partition pt = new Partition(i_file);
double mean = 0.0;
int max = -1;
// 乱数の初期値を変える
for (int i1 = 0; i1 < n; i1++) {
Console.WriteLine();
Console.WriteLine("+++++問題 " + i_file + "+++++");
// 最適化
pt.Optimize(1000 * i1 + 1234567); // 引数は乱数の初期値
// 最適値とその平均の計算
mean += pt.Max;
if (max < 0 || pt.Max < max)
max = pt.Max;
}
mean /= n;
// 結果
if (pt.out_m <= 0)
Console.WriteLine(" -----最小 " + max + " 平均 " + mean + "-----");
else {
StreamWriter OUT = new StreamWriter(pt.o_file, true);
OUT.WriteLine(" -----最小 " + max + " 平均 " + mean + "-----");
OUT.Close();
}
}
}
}
}
//------------------------ケーススタディデータ(data.txt)------
/*
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
*/
//---------------------データファイル(data1.txt)------------
/*
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
*/
//---------------------データファイル(data2.txt)------------
/*
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
*/
'**************************'
' 巡回セールスマン問題 '
' (分割法) '
' coded by Y.Suganuma '
'**************************'
Imports System.IO
Imports System.Text.RegularExpressions
Module Test
Sub Main(args() As String)
' 入力ミス
If args.Length = 0
Console.WriteLine("***error ケーススタディファイル名を入力して下さい")
' 入力OK
Else
Dim MS As Regex = New Regex("\s+")
' 入力データファイル名と問題数
Dim inp As StreamReader = New StreamReader(args(0))
Dim str() As String = MS.Split(inp.ReadLine().Trim())
Dim nm As Integer = Integer.Parse(str(1)) ' 問題の数
For i0 As Integer = 1 To nm
' 各問題の実行
str = MS.Split(inp.ReadLine().Trim())
Dim i_file As String = str(1) ' データファイル名
Dim n As Integer = Integer.Parse(str(3)) ' 繰り返し回数
Dim pt As Partition = new Partition(i_file)
Dim mean As Double = 0.0
Dim max As Integer = -1
' 乱数の初期値を変える
For i1 As Integer = 0 To n-1
Console.WriteLine()
Console.WriteLine("+++++問題 " & i_file & "+++++")
' 最適化
pt.Optimize(1000 * i1 + 1234567) ' 引数は乱数の初期値
' 最適値とその平均の計算
mean += pt.Max
If max < 0 or pt.Max < max
max = pt.Max
End If
Next
mean /= n
' 結果
If pt.out_m <= 0
Console.WriteLine(" -----最小 " & max & " 平均 " & mean & "-----")
Else
Dim Out As StreamWriter = New StreamWriter(pt.o_file, true)
OUT.WriteLine(" -----最小 " & max & " 平均 " & mean & "-----")
OUT.Close()
End If
Next
inp.Close()
End If
End Sub
'*******************************'
' 距離の計算 '
' n_c : 都市の数 '
' p : 都市番号 '
' rg : 都市間の距離 '
' return : 距離 '
'*******************************'
Function kyori(n_c As Integer, p() As Integer, rg(,) As Double)
Dim range As Double = 0
Dim n1 As Integer = p(0)
Dim n2 As Integer
For i1 As Integer = 1 To n_c-1
n2 = p(i1)
range += rg(n1,n2)
n1 = n2
Next
n2 = p(0)
range += rg(n1,n2)
Return range
End Function
'***********************'
' クラスPartitionの定義 '
'***********************'
Class Partition
Private rg(,) As Double ' 都市間の距離
Private p_x() As Double ' x軸の分割点
Private p_y() As Double ' y軸の分割点
Private fix As Integer ' =1 : 近傍を固定
' =0 : 近傍を可変
Private max_try As Integer ' 最大試行回数
Private seq_w1() As Integer ' 作業領域
Private seq_w2() As Integer ' 作業領域
Private neib As Integer ' 近傍(2 or 3)
Public seisu As Integer ' 位置データの表現方法
' =1 : 整数
' =-1 : 実数(距離を整数計算)
' =-2 : 実数(距離を実数計算)
Private sel As Integer ' エッジの選択方法
' =0 : 最良のものを選択
' =1 : 最初のものを選択
Private rn As Random ' 乱数
Private city(,) As Double '都市の位置データ
Private city_i(,) As Double '都市の位置データ(作業領域)
Public Max As Integer ' 最適経路の長さ
Private n_city As Integer ' 都市の数
Private n_seq(,) As Integer ' 各領域の都市数
Private n_seq1(,) As Integer ' 各領域の都市数(ワーク)
Private n_p_x As Integer ' x軸方向の分割数
Private n_p_y As Integer ' y軸方向の分割数
Public out_m As Integer ' 出力方法
' =-1 : ディスプレイ(経路長だけ)
' =0 : ディスプレイ
' =1 : ファイル
' =2 : ファイル(経路長だけ)
Private range As Integer ' 現在の評価値
Private seed As Integer ' 乱数の初期値
Private seq(,,) As Integer ' 経路
Private seq1(,,) As Integer ' 経路(ワーク)
Private state(,) As Integer ' 領域結合用ワーク
Public o_file As String ' 出力ファイル名
Private i_file As String ' 入力ファイル名
'**************************'
' コンストラクタ '
' i_file : ファイル名 '
'**************************'
Public Sub New (name As String)
i_file = name
Dim MS As Regex = New Regex("\s+")
Dim inp As StreamReader = New StreamReader(i_file)
' 基本データ
' 1行目
Dim str() As String = MS.Split(inp.ReadLine().Trim())
n_city = Integer.Parse(str(1))
sel = Integer.Parse(str(3))
neib = Integer.Parse(str(5))
seisu = Integer.Parse(str(7))
If neib < 0
neib = -neib
fix = 0
Else
fix = 1
End If
' 2行目
str = MS.Split(inp.ReadLine().Trim())
out_m = Integer.Parse(str(1))
o_file = str(3)
' 3行目
str = MS.Split(inp.ReadLine().Trim())
n_p_x = Integer.Parse(str(2))
n_p_y = Integer.Parse(str(4))
max_try = Integer.Parse(str(6))
' 都市の位置データ
ReDim city(n_city, 2)
For i1 As Integer = 0 To n_city-1
str = MS.Split(inp.ReadLine().Trim())
city(i1,0) = Double.Parse(str(0))
city(i1,1) = Double.Parse(str(1))
Next
inp.Close()
' 距離テーブルの作成
ReDim rg(n_city, n_city)
For i1 As Integer = 0 To n_city-1
For i2 As Integer = i1+1 To n_city-1
Dim x As Double = city(i2,0) - city(i1,0)
Dim y As Double = city(i2,1) - city(i1,1)
rg(i1,i2) = Math.Sqrt(x * x + y * y)
If seisu > -2
rg(i1,i2) = Math.Floor(rg(i1,i2) + 0.5)
End If
Next
Next
For i1 As Integer = 1 To n_city-1
For i2 As Integer = 0 To i1-1
rg(i1,i2) = rg(i2,i1)
Next
Next
' 作業領域
ReDim state(n_p_y, n_p_x)
ReDim n_seq(n_p_y, n_p_x)
ReDim n_seq1(n_p_y, n_p_x)
ReDim seq(n_p_y, n_p_x, n_city)
ReDim seq1(n_p_y, n_p_x, n_city)
ReDim seq_w1(n_city)
ReDim seq_w2(n_city)
ReDim p_x(n_p_x)
ReDim p_y(n_p_y)
' 都市の分割
For i1 As Integer = 0 To n_city-1
seq_w1(i1) = 0
Next
Dim min_x As Double = city(0,0)
Dim max_x As Double = city(0,0)
Dim min_y As Double = city(0,1)
Dim max_y As Double = city(0,1)
For i1 As Integer = 1 To n_city-1
If city(i1,0) < min_x
min_x = city(i1,0)
Else
If city(i1,0) > max_x
max_x = city(i1,0)
End If
End If
If city(i1,1) < min_y
min_y = city(i1,1)
Else
If city(i1,1) > max_y
max_y = city(i1,1)
End If
End If
Next
Dim s_x As Double = (max_x - min_x) / n_p_x
p_x(0) = min_x + s_x
p_x(n_p_x-1) = max_x
For i1 As Integer = 1 To n_p_x-2
p_x(i1) = p_x(0) + i1 * s_x
Next
Dim s_y As Double = (max_y - min_y) / n_p_y
p_y(0) = min_y + s_y
p_y(n_p_y-1) = max_y
For i1 As Integer = 1 To n_p_y-2
p_y(i1) = p_y(0) + i1 * s_y
Next
Dim max As Integer = 0
For i1 As Integer = 0 To n_p_y-1
For i2 As Integer = 0 To n_p_x-1
Dim n As Integer = 0
For i3 As Integer = 0 To n_city-1
If seq_w1(i3) = 0
If city(i3,0) <= p_x(i2) and city(i3,1) <= p_y(i1)
seq_w1(i3) = 1
seq_w2(n) = i3
n += 1
End If
End If
Next
n_seq1(i1,i2) = n
If n > 0
For i3 As Integer = 0 To n-1
seq1(i1,i2,i3) = seq_w2(i3)
Next
If n > max
max = n
End If
End If
Next
Next
For i1 As Integer = 0 To n_p_y-1
For i2 As Integer = 0 To n_p_x-1
state(i1,i2) = 1
If n_seq1(i1,i2) > 0
state(i1,i2) = 0
End If
Next
Next
' 作業領域
Console.WriteLine("最大都市数 " & max)
ReDim city_i(max, 2)
End Sub
'****************************'
' 最適化の実行 '
' seed_i : 乱数の初期値 '
'****************************'
Public Sub Optimize(seed_i As Integer)
' 乱数の初期設定
seed = seed_i
rn = new Random(seed) ' rn.NextDouble()
For i1 As Integer = 0 To n_p_y-1
For i2 As Integer = 0 To n_p_x-1
n_seq(i1,i2) = n_seq1(i1,i2)
state(i1,i2) = 1
If n_seq1(i1,i2) > 0
state(i1,i2) = 0
End If
For i3 As Integer = 0 To n_seq1(i1,i2)-1
seq(i1,i2,i3) = seq1(i1,i2,i3)
Next
Next
Next
' 分割数と開始時間の出力(ファイルへ出力する場合)
If out_m > 0
Output(0)
End If
' 分割毎の最適化
For i1 As Integer = 0 To n_p_y-1
For i2 As Integer = 0 To n_p_x-1
If n_seq(i1,i2) > 3
' 近傍の大きさ
Dim nb As Integer
if n_seq(i1,i2) > 3
nb = neib
Else
nb = 2
End If
' 都市位置データの設定
For i3 As Integer = 0 To n_seq(i1,i2)-1
Dim k As Integer = seq(i1,i2,i3)
city_i(i3,0) = city(k,0)
city_i(i3,1) = city(k,1)
Next
' 最適化
Dim it As Iteration = new Iteration (n_seq(i1,i2), max_try,
seisu, sel, nb, fix, 0, -1, 0, o_file,
city_i, rn)
Dim max As Integer = it.Optimize()
' 結果の保存
For i3 As Integer = 0 To n_seq(i1,i2)-1
Dim k As Integer = it.seq(i3)
seq_w1(i3) = seq(i1,i2,k)
Next
For i3 As Integer = 0 To n_seq(i1,i2)-1
seq(i1,i2,i3) = seq_w1(i3)
Next
' 出力(文字)
Dim r As Integer
Dim sq(n_seq(i1,i2)) As Integer
For i3 As Integer = 0 TO n_seq(i1,i2)-1
sq(i3) = seq(i1,i2,i3)
Next
If seisu > -2
r = Math.Floor(kyori(n_seq(i1,i2), sq, rg))
Else
r = Math.Floor(kyori(n_seq(i1,i2), sq, rg) + 0.5)
End If
Console.WriteLine(" y " & (i1+1) & " x " & (i2+1) &
" n_city " & n_seq(i1,i2) &
" range " & r & " (trial " & max & ")")
End If
Next
Next
' 経路の接続
range = Connect()
Max = range
' 出力(文字)
Output(n_city)
End Sub
'*********************'
' 出力 '
' n_c : 都市の数 '
'*********************'
Sub Output(n_c As Integer)
Dim OUT As StreamWriter = new StreamWriter(o_file, true)
If out_m <= 0
Console.WriteLine("距離 " & range)
Console.ReadLine()
Else
Dim now1 As DateTime = DateTime.Now ' 現在時刻の獲得
If n_c > 0
Console.WriteLine("距離 " & range)
OUT.WriteLine(" 距離 " & range & " 時間 " & now1)
Else
OUT.WriteLine("問題 " & i_file & " 乱数 " & seed & " 分割 " & n_p_x &
" " & n_p_y & " 時間 " & now1)
End If
End If
Dim k As Integer = 0
If n_c > 0 and (out_m = 0 or out_m = 1)
For i1 As Integer = 0 To n_c-1
Dim n As Integer = seq_w1(i1)
If out_m > 0
If seisu > 0
OUT.WriteLine(" " & n & " " & Math.Floor(city(n,0)) & " " & Math.Floor(city(n,1)))
Else
OUT.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1))
End If
Else
If seisu > 0
Console.WriteLine(" " & n & " " & Math.Floor(city(n,0)) & " " & Math.Floor(city(n,1)))
Else
Console.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1))
End If
End If
If out_m = 0
k += 1
If k = 10
Console.ReadLine()
k = 0
End If
End If
Next
End If
OUT.Close()
End Sub
'**********************'
' 分割された領域の接続 '
'**********************'
Function Connect()
Dim wd As Double
Dim wd1 As Double
Dim wa1 As Double
Dim wa2 As Double
Dim min As Double = 0
Dim i1 As Integer
Dim i2 As Integer
Dim i3 As Integer
Dim i4 As Integer
Dim k As Integer
Dim k1 As Integer = 0
Dim k2 As Integer = 0
Dim k3 As Integer = 0
Dim k4 As Integer = 0
Dim min_c As Integer = 0
Dim n As Integer
Dim r As Integer
Dim r1 As Integer = 0
Dim r2 As Integer = 0
Dim r3 As Integer = 0
Dim r4 As Integer = 0
Dim s1 As Integer = 0
Dim s2 As Integer = 0
Dim sw As Integer = 1
'
' 領域が1つの場合
'
If n_p_x = 1 and n_p_y = 1
For i1 = 0 To n_seq(0,0)-1
seq_w1(i1) = seq(0,0,i1)
Next
'
' 領域が複数の場合
'
Else
Do While sw > 0
' 最小節点領域
min_c = n_city
sw = 0
For i1 = 0 To n_p_y-1
For i2 = 0 To n_p_x-1
If state(i1,i2) = 0 and n_seq(i1,i2) < min_c
sw = 1
r1 = i1
r2 = i2
min_c = n_seq(i1,i2)
End If
Next
Next
' 結合する対象領域の決定
If sw > 0
sw = 0
For i1 = 0 To n_p_y-1
For i2 = 0 To n_p_x-1
If state(i1,i2) = 0 and (i1 <> r1 or i2 <> r2)
' 節点の数>2
If n_seq(r1,r2) > 1
For i3 = 0 To n_seq(r1,r2)-1
k1 = seq(r1,r2,i3)
if i3 = n_seq(r1,r2)-1
k2 = seq(r1,r2,0)
Else
k2 = seq(r1,r2,i3+1)
End If
wd1 = rg(k1,k2)
For i4 = 0 To n_seq(i1,i2)-1
k3 = seq(i1,i2,i4)
If i4 = n_seq(i1,i2)-1
k4 = seq(i1,i2,0)
Else
k4 = seq(i1,i2,i4+1)
End If
wd = wd1 + rg(k3,k4)
wa1 = rg(k1,k3) + rg(k2,k4)
wa2 = rg(k1,k4) + rg(k2,k3)
If sw = 0 or wa1-wd < min
min = wa1 - wd
r3 = i1
r4 = i2
If i3 = n_seq(r1,r2)-1
s1 = 0
Else
s1 = i3 + 1
End If
If i4 = n_seq(i1,i2)-1
s2 = 0
Else
s2 = i4 + 1
End If
sw = -1
End If
If sw = 0 or wa2-wd < min
min = wa2 - wd
r3 = i1
r4 = i2
s1 = i3
s2 = 0
If i4 = n_seq(i1,i2)-1
s2 = 0
Else
s2 = i4 + 1
End If
sw = 1
End If
Next
Next
' 節点の数=1
Else
k1 = seq(r1,r2,0)
If n_seq(i1,i2) > 1
For i4 = 0 To n_seq(i1,i2)-1
k3 = seq(i1,i2,i4)
If i4 = n_seq(i1,i2)-1
k4 = seq(i1,i2,0)
Else
k4 = seq(i1,i2,i4+1)
End If
wd = rg(k3,k4)
wa1 = rg(k1,k3) + rg(k1,k4)
If sw = 0 or wa1-wd < min
min = wa1 - wd
r3 = i1
r4 = i2
s1 = 0
If i4 = n_seq(i1,i2)-1
s2 = 0
Else
s2 = i4 + 1
End If
sw = 1
End If
Next
Else
k3 = seq(i1,i2,0)
wa1 = rg(k1,k3)
If sw = 0 or wa1 < min
min = wa1
r3 = i1
r4 = i2
s1 = 0
s2 = 0
sw = 1
End If
End If
End If
End If
Next
Next
' 領域の結合
seq_w1(0) = seq(r1,r2,s1)
k = 1
n = s2
For i1 = 0 To n_seq(r3,r4)-1
seq_w1(k) = seq(r3,r4,n)
k += 1
n += 1
If n > n_seq(r3,r4)-1
n = 0
End If
Next
If sw > 0
n = s1 + 1
For i1 = 0 To n_seq(r1,r2)-2
If n > n_seq(r1,r2)-1
n = 0
End If
seq_w1(k) = seq(r1,r2,n)
k += 1
n += 1
Next
Else
n = s1 - 1
For i1 = 0 To n_seq(r1,r2)-2
If n < 0
n = n_seq(r1,r2) - 1
End If
seq_w1(k) = seq(r1,r2,n)
k += 1
n -= 1
Next
End If
' 状態の変更
n_seq(r1,r2) += n_seq(r3,r4)
state(r3,r4) = 1
For i1 = 0 To n_seq(r1,r2)-1
seq(r1,r2,i1) = seq_w1(i1)
Next
sw = 1
End If
Loop
End If
If seisu > -2
r = Math.Floor(kyori(n_city, seq_w1, rg))
Else
r = Math.Floor(kyori(n_city, seq_w1, rg) + 0.5)
End If
Return r
End Function
End Class
'***********************'
' クラスIterationの定義 '
'***********************'
Class Iteration
Private rg(,) As Double ' 都市間の距離
Private fix As Integer ' =1 : 近傍を固定
' =0 : 近傍を可変
Private max_try As Integer ' 最大試行回数
Private neib As Integer ' 近傍(2 or 3)
Private out_d As Integer ' 表示間隔
Private seq_w1() As Integer ' 都市を訪れる順序(ワーク)
Private seq_w2() As Integer ' 都市を訪れる順序(ワーク)
Private seq_w3() As Integer ' 都市を訪れる順序(ワーク)
Private seq_w4() As Integer ' 都市を訪れる順序(ワーク)
Private seq_w5() As Integer ' 都市を訪れる順序(ワーク)
Private out_lvl As Integer ' 出力レベル
' =0 : 最終出力だけ
' n>0 : n世代毎に出力(負の時はファイル)
Private out_m As Integer ' 出力方法
' =-1 : 出力しない
' =0 : すべてを出力
' =1 : 評価値だけを出力(最終結果だけはすべてを出力)
Private seisu As Integer ' 位置データの表現方法
' =1 : 整数
' =-1 : 実数(距離を整数計算)
' =-2 : 実数(距離を実数計算)
Private sel As Integer ' エッジの選択方法
' =0 : 最良のものを選択
' =1 : 最初のものを選択
Private o_file As String ' 出力ファイル名
Private rn As Random ' 乱数
Private range As Double ' 現在の評価値
Private city(,) As Double '都市の位置データ
Private n_city As Integer ' 都市の数
Private n_tri As Integer ' 試行回数
Public seq() As Integer ' 都市を訪れる順序
'********************************'
' コンストラクタ '
' n_city_i : 都市の数 '
' max_try_i : 最大試行回数 '
' sei_i : 整数 or 実数 '
' sel_i : エッジの選択方法 '
' neib_i : 近傍(2 or 3) '
' fix_i : 近傍の扱い方 '
' out_lvl_i : 出力レベル '
' out_m_i : 出力方法 '
' out_d_i : 表示間隔 '
' o_file_i : 出力ファイル名 '
' city_i : 都市の位置データ '
' rn_i : 乱数 '
'********************************'
Public Sub New (n_city_i As Integer, max_tri_i As Integer, sei_i As Integer,
sel_i As Integer, neib_i As Integer, fix_i As Integer,
out_lvl_i As Integer, out_m_i As Integer, out_d_i As Integer,
o_file_i As String, city_i(,) As Double, rn_i As Random)
' 値の設定
n_city = n_city_i
max_try = max_tri_i
seisu = sei_i
sel = sel_i
neib = neib_i
fix = fix_i
out_lvl = out_lvl_i
out_m = out_m_i
out_d = out_d_i
o_file = o_file_i
rn = rn_i
n_tri = 0
' 都市の位置データ
ReDim city(n_city, 2)
For i1 As Integer = 0 To n_city-1
city(i1,0) = city_i(i1,0)
city(i1,1) = city_i(i1,1)
Next
' 距離テーブルの作成
ReDim rg(n_city, n_city)
For i1 As Integer = 0 To n_city-1
For i2 As Integer = i1+1 To n_city-1
Dim x As Double = city(i2,0) - city(i1,0)
Dim y As Double = city(i2,1) - city(i1,1)
rg(i1,i2) = Math.Sqrt(x * x + y * y)
If seisu > -2
rg(i1,i2) = Math.Floor(rg(i1,i2) + 0.5)
End If
Next
Next
For i1 As Integer = 1 To n_city-1
For i2 As Integer = 0 To i1-1
rg(i1,i2) = rg(i2,i1)
Next
Next
' 都市を訪れる順序(初期設定)
ReDim seq(n_city)
ReDim seq_w1(n_city)
ReDim seq_w2(n_city)
ReDim seq_w3(n_city)
ReDim seq_w4(n_city)
ReDim seq_w5(n_city)
For i1 As Integer = 0 To n_city-1
Dim sw As Integer = 0
Do While sw = 0
Dim ct As Integer = Math.Floor(rn.NextDouble() * n_city)
If ct >= n_city
ct = n_city - 1
End If
seq(i1) = ct
sw = 1
Dim ii As Integer = 0
Do While ii < i1 and sw > 0
If ct = seq(ii)
sw = 0
End If
ii += 1
Loop
Loop
Next
End Sub
'**************'
' 最適化の実行 '
'**************'
Public Function Optimize ()
Dim sw As Integer
' 初期設定
range = kyori(n_city, seq, rg)
' 初期状態の出力(文字)
If out_m >= 0 and Math.Abs(out_lvl) > 0
If seisu > -2
Console.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range))
Else
Console.WriteLine("***試行回数 " & n_tri & " 距離 " & range)
End If
Output(out_lvl)
End If
' 実行
sw = 1
n_tri = 1
Do While n_tri <= max_try and sw > 0
' 改善
sw = Change()
' 出力(文字)
If out_d > 0
If (n_tri Mod out_d) = 0
If seisu > -2
Console.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range))
Else
Console.WriteLine("***試行回数 " & n_tri & " 距離 " & range)
End If
End If
End If
If out_m >= 0 and Math.Abs(out_lvl) > 0
If (n_tri Mod Math.Abs(out_lvl)) = 0
Output(out_lvl)
End If
End If
Loop
' 最終出力(文字)
If out_m >= 0
n_tri -= 1
If seisu > -2
Console.WriteLine("***試行回数 " & n_tri & " 距離 " + Math.Floor(range))
Else
Console.WriteLine("***試行回数 " & n_tri & " 距離 " + Math.Floor(range+0.5))
End If
Output(out_lvl)
End If
Return n_tri
End Function
'*****************************'
' 出力 '
' sw : >= 0 : 出力先未定 '
' < 0 : ファイル '
'*****************************'
Sub Output(sw As Integer)
Dim pr As Integer = -1
If sw >= 0
Console.Write(" 出力先は(0:出力なし,n:画面にn個づつ,-1:ファイル)? ")
pr = Integer.Parse(Console.ReadLine())
End If
If pr <> 0
Dim Out As StreamWriter = new StreamWriter(o_file, true)
If pr < 0
Dim now1 As DateTime = DateTime.Now ' 現在時刻の獲得
If seisu > -2
OUT.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range) & " 時間 " & now1)
Else
OUT.WriteLine("***試行回数 " & n_tri & " 距離 " & Math.Floor(range+0.5) & " 時間 " & now1)
End If
End If
If out_m = 0
Dim k As Integer = 0
For i1 As Integer = 0 To n_city-1
Dim n As Integer = seq(i1)
If pr < 0
If seisu > 0
OUT.WriteLine(" " & n & " " & Math.floor(city(n,0)) & " " & Math.floor(city(n,1)))
Else
OUT.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1))
End If
Else
If seisu > 0
Console.WriteLine(" " & n & " " & Math.floor(city(n,0)) & " " & Math.floor(city(n,1)))
Else
Console.WriteLine(" " & n & " " & city(n,0) & " " & city(n,1))
End If
End If
If pr > 0
k += 1
If k = pr
Console.ReadLine()
k = 0
End If
End If
Next
End If
OUT.Close()
End If
End Sub
'************************************'
' エッジの入れ替え '
' return : =0 : 改善がなかった '
' =1 : 改善があった '
'************************************'
Function Change()
Dim max As Double = range
Dim max1 As Double = 0.0
Dim r As Double
Dim ch As Integer = 0
Dim i0 As Integer
Dim i1 As Integer
Dim i2 As Integer
Dim i3 As Integer
Dim i4 As Integer
Dim k As Integer
Dim k1 As Integer = 0
Dim k2 As Integer = 0
Dim k3 As Integer
Dim k4 As Integer
Dim n As Integer
Dim nn As Integer
Dim n1 As Integer = 0
Dim n2 As Integer = 0
Dim n3 As Integer
Dim n4 As Integer
Dim sw As Integer = 0
Dim sw1 As Integer = 0
Dim sw2
'
' 近傍を可変
'
If fix = 0
' 初期設定(k=2)
k = 2
For i1 = 0 To n_city-1
seq_w4(i1) = seq(i1)
seq_w3(i1) = 0
Next
' 評価
sw2 = 0
i0 = 0
Do While i0 < n_city-2 and sw2 < 2
If i0 = 0
n = n_city - 1
Else
n = n_city
End If
i1 = i0 + 2
Do While i1 < n and sw2 < 2
' 相手の場所
k3 = i1
k4 = k3 + 1
If k4 > n_city-1
k4 = 0
End If
' 順番の入れ替え
n3 = -1
i2 = 0
Do While i2 < n_city and n3 < 0
If seq_w4(i2) = seq(i0+1)
n3 = i2 + 1
End If
i2 += 1
Loop
nn = n3
n4 = -1
i2 = 0
Do While i2 < n_city and n4 < 0
If nn > n_city-1
nn = 0
End If
If seq_w4(nn) = seq(k3) or seq_w4(nn) = seq(k4)
n4 = seq_w4(nn)
Else
nn += 1
End If
i2 += 1
Loop
If n4 = seq(k4)
n4 = k3
k3 = k4
k4 = n4
End If
' 評価
seq_w1(0) = seq(k4)
seq_w1(1) = seq(i0+1)
n4 = -1
nn = 2
Do While n4 < 0
If n3 > n_city-1
n3 = 0
End If
seq_w1(nn) = seq_w4(n3)
If seq_w4(n3) = seq(k3)
n4 = 1
End If
nn += 1
n3 += 1
Loop
seq_w1(nn) = seq(i0)
nn += 1
n3 = -1
n4 = -1
i2 = 0
Do While i2 < n_city and n3 < 0
If seq_w4(i2) = seq(i0)
n3 = i2 - 1
If n3 < 0
n3 = n_city - 1
End If
End If
i2 += 1
Loop
Do While n4 < 0
If seq_w4(n3) = seq(k4)
n4 = 1
Else
seq_w1(nn) = seq_w4(n3)
nn += 1
n3 -= 1
If n3 < 0
n3 = n_city - 1
End If
End If
Loop
r = kyori(n_city, seq_w1, rg)
' 最適値の保存
If sw2 = 0 or r < max1
sw2 = 1
max1 = r
n1 = k3
n2 = k4
k1 = i0
k2 = i0 + 1
For i2 = 0 To n_city-1
seq_w5(i2) = seq_w1(i2)
Next
If sel > 0 and max1 < max
sw2 = 2
End If
End If
i1 += 1
Loop
i0 += 1
Loop
' 最適値の保存と近傍の増加
If sw2 > 0
If max1 < max
sw = 1
max = max1
For i1 = 0 To n_city-1
seq_w2(i1) = seq_w5(i1)
Next
End If
If k < neib
For i1 = 0 To n_city-1
seq_w4(i1) = seq_w5(i1)
Next
seq_w3(k1) = 1
seq_w3(k2) = 1
seq_w3(n1) = 1
seq_w3(n2) = 1
k1 = n2
k += 1
Else
sw1 = 1
End If
Else
sw1 = 1
End If
' 実行(k>2)
Do While sw1 = 0
' 評価
sw2 = 0
For i1 = 0 To n_city-1
' 相手の場所
k3 = i1
k4 = k3 + 1
If k4 > n_city-1
k4 = 0
End If
If seq_w3(k3) = 0 and seq_w3(k4) = 0
' 順番の入れ替え
n3 = -1
i2 = 0
Do While i2 < n_city and n3 < 0
If (seq_w4(i2) = seq(k2))
n3 = i2 + 1
End If
i2 += 1
Loop
nn = n3
n4 = -1
i2 = 0
Do While i2 < n_city and n4 < 0
If nn > n_city-1
nn = 0
End If
If seq_w4(nn) = seq(k3) or seq_w4(nn) = seq(k4)
n4 = seq_w4(nn)
Else
nn += 1
End If
i2 += 1
Loop
If n4 = seq(k4)
n4 = k3
k3 = k4
k4 = n4
End If
' 評価
seq_w1(0) = seq(k4)
seq_w1(1) = seq(k2)
n4 = -1
nn = 2
Do While n4 < 0
If n3 > n_city-1
n3 = 0
End If
seq_w1(nn) = seq_w4(n3)
If seq_w4(n3) = seq(k3)
n4 = 1
End If
nn += 1
n3 += 1
Loop
seq_w1(nn) = seq(k1)
nn += 1
n3 = -1
n4 = -1
i2 = 0
Do While i2 < n_city and n3 < 0
If seq_w4(i2) = seq(k1)
n3 = i2 - 1
If n3 < 0
n3 = n_city - 1
End If
End If
i2 += 1
Loop
Do While n4 < 0
If seq_w4(n3) = seq(k4)
n4 = 1
Else
seq_w1(nn) = seq_w4(n3)
nn += 1
n3 -= 1
If n3 < 0
n3 = n_city - 1
End If
End If
Loop
r = kyori(n_city, seq_w1, rg)
' 最適値の保存
If sw2 = 0 or r < max1
sw2 = 1
max1 = r
n1 = k3
n2 = k4
For i2 = 0 To n_city-1
seq_w5(i2) = seq_w1(i2)
Next
End If
End If
Next
' 最適値の保存と近傍の増加
If sw2 > 0
If max1 < max
sw = 1
max = max1
For i1 = 0 To n_city-1
seq_w2(i1) = seq_w5(i1)
Next
End If
If k < neib
For i1 = 0 To n_city-1
seq_w4(i1) = seq_w5(i1)
Next
seq_w3(n1) = 1
seq_w3(n2) = 1
k1 = n2
k += 1
Else
sw1 = 1
End If
Else
sw1 = 1
End If
Loop
'
' 近傍を固定
'
Else
n3 = Math.Floor(rn.NextDouble() * (n_city - 2))
If n3 > n_city-3
n3 = n_city - 3
End If
' 2近傍
i1 = 0
Do While i1 <= n_city-3 and ch = 0
If n3 = 0
n1 = n_city - 2
Else
n1 = n_city - 1
End If
i2 = n3 + 2
Do While i2 <= n1 and ch = 0
' 枝の場所((n3,n3+1), (k1,k2))
k1 = i2
If i2 = n_city-1
k2 = 0
Else
k2 = i2 + 1
End If
' 枝の入れ替え
seq_w1(0) = seq(n3)
k = 1
For i3 = k1 To n3+1 Step -1
seq_w1(k) = seq(i3)
k += 1
Next
nn = k2
Do While nn <> n3
seq_w1(k) = seq(nn)
k += 1
nn += 1
If nn > n_city-1
nn = 0
End If
Loop
' 評価
r = kyori(n_city, seq_w1, rg)
If r < max
max = r
sw = 1
For i3 = 0 To n_city-1
seq_w2(i3) = seq_w1(i3)
Next
If sel > 0
ch = 1
End If
End If
i2 += 1
Loop
n3 += 1
If n3 > n_city-3
n3 = 0
End If
i1 += 1
Loop
' 3近傍
If neib = 3 and ch = 0
i1 = 0
Do While i1 <= n_city-3 and ch = 0
n1 = n_city - 2
n2 = n_city - 1
i2 = n3 + 1
Do While i2 <= n1 and ch = 0
i3 = i2 + 1
Do While i3 <= n2 and ch = 0
' 枝の場所((n3,n3+1), (i2,i2+1), (k1,k2))
k1 = i3
If i3 = n_city-1
k2 = 0
Else
k2 = i3 + 1
End If
' 枝の入れ替えと評価
' 入れ替え(その1)
seq_w1(0) = seq(n3)
k = 1
For i4 = i2 To n3+1 Step -1
seq_w1(k) = seq(i4)
k += 1
Next
For i4 = k1 To i2+1 Step -1
seq_w1(k) = seq(i4)
k += 1
Next
nn = k2
Do While nn <> n3
seq_w1(k) = seq(nn)
k += 1
nn += 1
If nn > n_city-1
nn = 0
End If
Loop
' 評価(その1)
r = kyori(n_city, seq_w1, rg)
If r < max
max = r
sw = 1
For i3 = 0 To n_city-1
seq_w2(i3) = seq_w1(i3)
Next
If sel > 0
ch = 1
End If
End If
' 入れ替え(その2)
seq_w1(0) = seq(n3)
k = 1
For i4 = k1 To i2+1 Step -1
seq_w1(k) = seq(i4)
k += 1
Next
For i4 = n3+1 To i2
seq_w1(k) = seq(i4)
k += 1
Next
nn = k2
Do While nn <> n3
seq_w1(k) = seq(nn)
k += 1
nn += 1
If nn > n_city-1
nn = 0
End If
Loop
' 評価(その2)
r = kyori(n_city, seq_w1, rg)
If r < max
max = r
sw = 1
For i3 = 0 To n_city-1
seq_w2(i3) = seq_w1(i3)
Next
If sel > 0
ch = 1
End If
End If
' 入れ替え(その3)
seq_w1(0) = seq(n3)
k = 1
For i4 = i2+1 To k1
seq_w1(k) = seq(i4)
k += 1
Next
For i4 = i2 To n3+1 Step -1
seq_w1(k) = seq(i4)
k += 1
Next
nn = k2
Do While nn <> n3
seq_w1(k) = seq(nn)
k += 1
nn += 1
If nn > n_city-1
nn = 0
End If
Loop
' 評価(その3)
r = kyori(n_city, seq_w1, rg)
If r < max
max = r
sw = 1
For i3 = 0 To n_city-1
seq_w2(i3) = seq_w1(i3)
Next
If sel > 0
ch = 1
End If
End If
' 入れ替え(その4)
seq_w1(0) = seq(n3)
k = 1
For i4 = i2+1 To k1
seq_w1(k) = seq(i4)
k += 1
Next
For i4 = n3+1 To i2
seq_w1(k) = seq(i4)
k += 1
Next
nn = k2
Do While nn <> n3
seq_w1(k) = seq(nn)
k += 1
nn += 1
If nn > n_city-1
nn = 0
End If
Loop
' 評価(その4)
r = kyori(n_city, seq_w1, rg)
If r < max
max = r
sw = 1
For i3 = 0 To n_city-1
seq_w2(i3) = seq_w1(i3)
Next
If sel > 0
ch = 1
End If
End If
i3 += 1
Loop
i2 += 1
Loop
n3 += 1
If n3 > n_city-3
n3 = 0
End If
i1 += 1
Loop
End If
End If
' 設定
If sw > 0
range = max
For i1 = 0 To n_city-1
seq(i1) = seq_w2(i1)
Next
End If
Return sw
End Function
End Class
End Module
//------------------------ケーススタディデータ(data.txt)------
/*
問題の数 2
問題 data1.txt 繰り返し回数 2
問題 data2.txt 繰り返し回数 1
*/
//---------------------データファイル(data1.txt)------------
/*
都市の数 50 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 2 Y 2 最大試行回数 1000
86.950684 27.711487
82.357788 16.148376
29.791260 37.959290
27.493286 1.542664
90.893555 88.734436
40.109253 92.308044
87.445068 53.474426
24.893188 99.382019
11.633301 80.616760
61.532593 8.702087
30.645752 93.598938
4.714966 81.205750
86.669922 90.858459
84.127808 52.830505
96.893311 45.832825
4.458618 34.513855
53.503418 6.959534
45.394897 12.193298
23.687744 97.676086
61.624146 46.806335
49.633789 16.419983
82.833862 74.290466
48.529053 36.628723
13.711548 5.583191
12.561035 6.739807
33.944702 26.622009
8.917236 50.190735
98.220825 98.344421
79.785156 65.419006
36.227417 56.687927
42.352295 25.862122
52.651978 12.590027
88.806152 79.957581
27.182007 51.988220
86.334229 51.142883
14.505005 35.820007
77.124023 37.855530
44.308472 0.022888
78.363037 13.533020
21.279907 55.534363
82.238770 26.612854
25.106812 88.291931
55.938721 0.532532
10.476685 59.233093
41.650391 33.729553
7.077026 4.295349
56.561279 99.641418
19.595337 34.416199
92.858887 46.705627
27.719116 35.533142
*/
//---------------------データファイル(data2.txt)------------
/*
都市の数 10 選択方法(0:最良,1:最初) 1 近傍(2or3) 2 整数 -2
出力(0:ディスプレイ,1:ファイル) -1 出力ファイル名 out1.txt
分割数 X 1 Y 1 最大試行回数 1000
8.695068 2.771149
8.235779 1.614838
2.979126 3.795929
2.749329 0.154266
9.089355 8.873444
4.010925 9.230804
8.744507 5.347443
2.489319 9.938202
1.163330 8.061676
6.153259 0.870209
*/
| 情報学部 | 菅沼ホーム | 目次 | 索引 |