情報学部 | 菅沼ホーム | SE目次 | 索引 |
5 - 5 3 - 5
a0 = 1
-(-3) = 3 // 負の負は正 -(+3) = 3 // 正の負は負 +(-3) = 3 // 負の正は負 6 + (-3) = 3 // 負の数の加算 6 - (-3) = 9 // 負の数の減算 6 × (-3) = -18 // 符号に注意 -6 × (-3) = (-6) × (-3) = 18 // 符号に注意 6 ÷ (-3) = -2 // 符号に注意 -6 ÷ (-3) = (-6) ÷ (-3) = 2 // 符号に注意 (-2)3 = -8 // 負の数を奇数回かけると負 -23 = -8 // べき乗が優先 (-2)4 = 16 // 負の数を偶数回かけると正 -24 = -16 // べき乗が優先 5 + 6 × 2 = 17 // 加算,減算より乗算,除算を優先 5 - 6 ÷ 2 = 2 // 加算,減算より乗算,除算を優先 5 × 6 ÷ 2 = 15 // 同じ優先度であれば,最初から順番に実行
60 = 22 × 3 × 5
8 ÷ 7
x + 3 = 0 → x = -3 x2 - 3x + 2 = 0 → x = 1, 2
α = a + bi ( a + ib と表現する場合もある)
a + bi = c + di ⇔ a = c,かつ,b = d a + bi = 0 ⇔ a = 0,かつ,b = 0
a + bi = r cosθ + r sinθ i = r ( cosθ + i sinθ )
例: (2 + 3i) + (2 - i) = (2 + 2) + (3 - 1)i = 4 + 2i
例: (2 + 3i) (2 - i) = 2 × 2 - (2 × 1) i + (3 × 2) i - (3 × 1) i2 = 7 + 4i
xn = rn ( cos nθ + i sin nθ )
x3 = cos 3θ + i sin 3θ = 1
cos 3θ = 1,sin 3θ = 0
365 = 3 × 102 + 6 × 101 + 5 × 100
a2a1a0 = a2 × n2 + a1 × n1 + a0 × n0 0 ≦ ai ≦ (n-1)
365 = 3 × 72 + 6 × 71 + 5 × 70
7)194 7) 27 ・・・ 余り 5 7) 3 ・・・ 余り 6 0 ・・・ 余り 3
8 進法の 302 = 3 × 82 + 0 × 81 + 2 × 80 = 10 進法の 194 10 進法の 194 = 7 進法の 365 (上記の方法による)
0 0000 0 1 0001 1 2 0010 2 3 0011 3 4 0100 4 5 0101 5 6 0110 6 7 0111 7 8 1000 8 9 1001 9 10 1010 A 11 1011 B 12 1100 C 13 1101 D 14 1110 E 15 1111 F
3ax2,5y
3ax2 - 4bx + 5 (1)
(-x2 + 3x - 5) + 2(x2 - 5x + 2) = (-1 + 2)x2 + (3 - 10)x + (-5 + 4) = x2 - 7x - 1
xmxn = xm+n 例: x2x3y = x5y (xy)n = xnyn (xm)n = xm×n 例: (x2y)3 = x6y3
x3 → x2 → x1 = x
(-x2 + 3x - 5) (x2 - 5x + 2) = (-x2)(x2) + (-x2)(-5x) + (-x2)(2) + (3x)(x2) + (3x)(-5x) + (3x)(2) + (-5)(x2) + (-5)(-5x) + (-5)(2) = -x4 + 5x3 - 2x2 + 3x3 - 15x2 + 6x - 5x2 + 25x - 10 = -x4 + (5 + 3)x3 + (-2 - 15 - 5)x2 + (6 + 25)x - 10 = -x4 + 8x3 - 22x2 + 31x - 10
x2 + 4x = x(x + 4)
(4x2y3 - 3y2 + xy) ÷ xy = 4xy2 - 3x-1y + 1
(x3 - 3x + 4) ÷ (x2 + 2x - 5) → 商: x - 2, 余り: 6x - 6 ∴ (x3 - 3x + 4) = (x2 + 2x - 5) (x - 2) + (6x - 6)
x ≧ 0 のとき |x| = x, x < 0 のとき |x| = -x
|x| ≧ 0 ( 0 となるのは,x = 0 のときに限る) |-x| = |x|
x + 5 ≧ 0,つまり,x ≧ -5 のとき: |x + 5| = x + 5 x + 5 < 0,つまり,x < -5 のとき: |x + 5| = -(x + 5) = -x - 5
4x = 100 (1)
2(x + y) = 100 (2)
y = x + 10 (3)
ax + b = 0
|ax + b| = c
ax + b > 0 のとき.ax + b = c ∴ x = (c - b) / a ax + b < 0 のとき.-ax - b = c ∴ x = -(c + b) / a
D = b2 - 4ac
(x - α)(x - β) = 0 ∴ x2 - (α + β)x + αβ = 0
x2 - px + q = 0
A(x) = B(x)Q(x) + R(x)
f(x) = (x - α)Q(x) + R(x)
f(x) = x3 - 6x2 + 11x - 6 = 0
(x - 1)(x - 2)(x - 3) = 0
ax2 + bx + c > 0 (1)
x2 + x + 1 > 0
-x2 + x - 1 > 0
x2 - 2x + 1 > 0 ( ≧ )
-x2 + 2x - 1 > 0 ( ≧ )
x1 < x < x2 a > 0 の場合 x < x1,または,x > x2 a < 0 の場合
f1(x, y, ・・・) = 0 f2(x, y, ・・・) = 0 ・・・・・
2x + 4y - 2z = 4 (1) 2x + y + z = 7 (2) x + y + z = 6 (3)
3y - 3z = -3 (4)
-y - z = -5 (5)
3(5 - z) - 3z = -3 ∴ z = 3
2x + y = 4 (6) 4x + 2y = 8 (7)
2x + y = 3 (8) 4x + 2y = 8 (9)
x + y = 3 (10) x + 2y = 8 (11) x - 2y = 5 (12)
dx + fy = g (13) y = ax2 + bx + c (放物線) (14) 又は (x - x0)2 + (y - y0)2 = r2 (円) 又は xy = k (双曲線)
a1x + b1 > 0, a2x + b2 > 0, ・・・ (15) dx + e > 0, ax2 + bx + c > 0 (16)
x + 2 > 0, x - 3 < 0
-2 < x < 3
x > 0, x2 - x - 2 < 0
0 < x < 2
x + y = 10 匹数 2x + 4y = 28 足の数
2x + 4(10 - x) = 28 足の数
x / 4 - x / 5 = 0.5 かかった時間の差
5x = 4(x + 0.5) 左辺も右辺も学校までの距離
(x + 5190) ÷ y = 182 長さ 5190 m のトンネル通過時間 (x + 5760) ÷ y = 201 長さ 5760 m のトンネル通過時間
100 × 1.2x - 100x = 4000 得られる利益
(1 / 15 + 1 / 10)x = 1
6x = 30 + 0.5x 長針の位置 = 短針の位置
(5 + x) = 30 + x 右辺が x 年後のお父さんの年齢
3(x - y) = 12 上り 2(x + y) = 12 下り
0.01 × 100 + 0.03 × 300 = 400 × 0.01x 左辺も右辺も食塩の量(食塩の量は変化しない)
x = 2 × (100 ÷ 5 + 1)
ax2 + 3bx + c = 9x + 3
a = 0 右辺に x2 を含む項がない 3b = 9 c = 3
AO : OP = 2 : 1 BO : OQ = 2 : 1 CO : OR = 2 : 1
AR = AQ, BP = BR, CQ = CP
BD : DC = AB : AC
AB2 = BC2 + CA2
AB = |a - b| = |b - a|
(x - a) : (b - x) = m : n
(x - a) : (x - b) = m : n
y = 10x (1)
y = ax (2)
y = 20 / x ∴ xy = 20 (3)
y = a / x ∴ xy = a (4)
ax + by + c = 0 (1)
y = kx + m (2)
y = 2x + 4
y = -0.25x - 2
y - y1 = k (x - x1)
x1 = x2 の場合: x = x1
・k1 = k2 → 2直線が平行 ・k1k2 = -1 → 2直線が垂直(直交)
y = -x + 1
x + y - 1 = 0
y = a (x - p)2 + q (1)
y = 2 (x - 2)2 - 8 頂点:(2, -8), 軸:x = 2
y = -0.5 (x + 4)2 + 6 頂点:(-4, 6), 軸:x = -4
y = ax2 + bx + c (2)
y = 2(x - 1)2 + 2
y1 = a (x1 - p1)2 + q1
y1 = a (x1 - p1)2 + q y2 = a (x2 - p1)2 + q
0 = ax12 + bx1 + c 0 = ax22 + bx2 + c y1 = c
y1 = ax12 + bx1 + c y2 = ax22 + bx2 + c y3 = ax32 + bx3 + c
(x - a)2 + (y - b)2 = r2 (1)
(x - 1)2 + (y + 2)2 = 9
x2 + y2 - 2ax - 2by + a2 + b2 - r2 = 0
x2 + y2 + ex + fy + g = 0 (2) ただし,4g - e2 - f2 < 0
(x0 - a) (x - a) + (y0 - b) (y - b) = r2
ax + b = 0 (1)
y = ax + b
y = k1x + m1 y = k2x + m2
y = ax + b y = 0
y = ax2 + bx + c> y = dx + e
ax2 + bx + c = dx + e
(b - d)2 - 4a(c - e) > 0 : 放物線と直線が交わる (b - d)2 - 4a(c - e) = 0 : 直線が放物線に接する (b - d)2 - 4a(c - e) < 0 : 放物線と直線は交わらない
x + 3 > 0, x2 - 4 < 0
x > -3, -2 < x < 2
y > ax + b, y > ax2 + bx + c, (x - a)2 + (y - b)2 > r2
xn = a
axay = ax + y, (ax)y = axy, (ab)x = axbx
y = ax
ap = q
p = logaq
log101000 = 3
y = logax
3, 6, 9, 12, ・・・
a1, a2, a3, a4, ・・・, an, ・・・
an = 3n
an = a1 + (n - 1) d
Sn = a1 + (a1 + d) + (a1 + 2d) + ・・・ + {a1 + (n - 1)d} Sn = {a1 + (n - 1)d} + {a1 + (n - 2)d} + {a1 + (n - 3)d} + ・・・ + a1
an = a1r(n - 1)
Sn = a1 + a1r + a1r2 + ・・・ + a1r(n - 1) (1)
rSn = a1r + a1r2 + a1r3 + ・・・ + a1rn (2)
(1 - r)Sn = a1 - a1rn
情報学部 | 菅沼ホーム | SE目次 | 索引 |