情報学部 | 菅沼ホーム | 目次 | 索引 |
/********************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* coded by Y.Suganuma */ /********************************************/ #include <stdio.h> int Bairstow(int, int, double, double, double, double *, double *, double *, double *, double *); int Frame(int, int, double, double, double, double *, double *, double *, double *, double *, double **, double **, double **); int main() { double **A, **H1, **H2, *a, *b, *c, *rl, *im, p0, q0, eps; int i1, ind, ct, n; // データの設定 ct = 1000; eps = 1.0e-10; p0 = 0.0; q0 = 0.0; n = 3; a = new double [n+1]; b = new double [n+1]; c = new double [n+1]; rl = new double [n]; im = new double [n]; A = new double * [n]; H1 = new double * [n]; H2 = new double * [n]; for (i1 = 0; i1 < n; i1++) { A[i1] = new double [n]; H1[i1] = new double [n]; H2[i1] = new double [n]; } A[0][0] = 7.0; A[0][1] = 2.0; A[0][2] = 1.0; A[1][0] = 2.0; A[1][1] = 1.0; A[1][2] = -4.0; A[2][0] = 1.0; A[2][1] = -4.0; A[2][2] = 2.0; // 計算 ind = Frame(n, ct, eps, p0, q0, a, b, c, rl, im, A, H1, H2); // 出力 if (ind > 0) printf("収束しませんでした!\n"); else { for (i1 = 0; i1 < n; i1++) printf(" %f i %f\n", rl[i1], im[i1]); } delete [] a; delete [] b; delete [] c; delete [] rl; delete [] im; for (i1 = 0; i1 < n; i1++) { delete [] A[i1]; delete [] H1[i1]; delete [] H2[i1]; } delete [] A; delete [] H1; delete [] H2; return 0; } /*************************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* A : 行列 */ /* H1, H2 : 作業域(nxnの行列) */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ int Frame(int n, int ct, double eps, double p0, double q0, double *a, double *b, double *c, double *rl, double *im, double **A, double **H1, double **H2) { int i1, i2, i3, i4, ind; a[0] = 1.0; // a1の計算 a[1] = 0.0; for (i1 = 0; i1 < n; i1++) a[1] -= A[i1][i1]; // a2の計算 for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) H1[i1][i2] = A[i1][i2]; H1[i1][i1] += a[1]; } a[2] = 0.0; for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) a[2] -= A[i1][i2] * H1[i2][i1]; } a[2] *= 0.5; // a3からanの計算 for (i1 = 3; i1 <= n; i1++) { for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) { H2[i2][i3] = 0.0; for (i4 = 0; i4 < n; i4++) H2[i2][i3] += A[i2][i4] * H1[i4][i3]; } H2[i2][i2] += a[i1-1]; } a[i1] = 0.0; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) a[i1] -= A[i2][i3] * H2[i3][i2]; } a[i1] /= i1; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) H1[i2][i3] = H2[i2][i3]; } } // ベアストウ法 ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im); return ind; } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ #include <math.h> int Bairstow(int n, int ct, double eps, double p0, double q0, double *a, double *b, double *c, double *rl, double *im) { double D, dp, dq, p1 = p0, p2 = 0.0, q1 = q0, q2 = 0.0; int i1, ind = 0, count = 0; /* 1次の場合 */ if (n == 1) { if (fabs(a[0]) < eps) ind = 1; else { rl[0] = -a[1] / a[0]; im[0] = 0.0; } } /* 2次の場合 */ else if (n == 2) { // 1次式 if (fabs(a[0]) < eps) { if (fabs(a[1]) < eps) ind = 1; else { rl[0] = -a[2] / a[1]; im[0] = 0.0; } } // 2次式 else { D = a[1] * a[1] - 4.0 * a[0] * a[2]; if (D < 0.0) { // 虚数 D = sqrt(-D); a[0] *= 2.0; rl[0] = -a[1] / a[0]; rl[1] = -a[1] / a[0]; im[0] = D / a[0]; im[1] = -im[0]; } else { // 実数 D = sqrt(D); a[0] = 1.0 / (2.0 * a[0]); rl[0] = a[0] * (-a[1] + D); rl[1] = a[0] * (-a[1] - D); im[0] = 0.0; im[1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 ind = 1; while (ind > 0 && count <= ct) { for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) b[i1] = a[i1]; else if (i1 == 1) b[i1] = a[i1] - p1 * b[i1-1]; else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]; } for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) c[i1] = b[i1]; else if (i1 == 1) c[i1] = b[i1] - p1 * c[i1-1]; else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]; } D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]); if (fabs(D) < eps) return ind; else { dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D; dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D; p2 = p1 + dp; q2 = q1 + dq; if (fabs(dp) < eps && fabs(dq) < eps) ind = 0; else { count++; p1 = p2; q1 = q2; } } } if (ind == 0) { // 2次方程式を解く D = p2 * p2 - 4.0 * q2; if (D < 0.0) { // 虚数 D = sqrt(-D); rl[0] = -0.5 * p2; rl[1] = -0.5 * p2; im[0] = 0.5 * D; im[1] = -im[0]; } else { // 実数 D = sqrt(D); rl[0] = 0.5 * (-p2 + D); rl[1] = 0.5 * (-p2 - D); im[0] = 0.0; im[1] = 0.0; } // 残りの方程式を解く n -= 2; for (i1 = 0; i1 <= n; i1++) a[i1] = b[i1]; ind = Bairstow(n, ct, eps, p0, q0, a, b, c, &rl[2], &im[2]); } } return ind; }
/********************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* coded by Y.Suganuma */ /********************************************/ import java.io.*; public class Test { public static void main(String args[]) throws IOException { double A[][], H1[][], H2[][], a[], b[], c[], rl[], im[], p0, q0, eps; int i1, ind, ct, n; // データの設定 ct = 1000; eps = 1.0e-10; p0 = 0.0; q0 = 0.0; n = 3; a = new double [n+1]; b = new double [n+1]; c = new double [n+1]; rl = new double [n]; im = new double [n]; A = new double [n][n]; H1 = new double [n][n]; H2 = new double [n][n]; A[0][0] = 7.0; A[0][1] = 2.0; A[0][2] = 1.0; A[1][0] = 2.0; A[1][1] = 1.0; A[1][2] = -4.0; A[2][0] = 1.0; A[2][1] = -4.0; A[2][2] = 2.0; // 計算 ind = Frame(n, ct, eps, p0, q0, a, b, c, rl, im, A, H1, H2); // 出力 if (ind > 0) System.out.println("収束しませんでした!"); else { for (i1 = 0; i1 < n; i1++) System.out.println(" " + rl[i1] + " i " + im[i1]); } } /*************************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* A : 行列 */ /* H1, H2 : 作業域(nxnの行列) */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ static int Frame(int n, int ct, double eps, double p0, double q0, double a[], double b[], double c[], double rl[], double im[], double A[][], double H1[][], double H2[][]) { int i1, i2, i3, i4, ind; a[0] = 1.0; // a1の計算 a[1] = 0.0; for (i1 = 0; i1 < n; i1++) a[1] -= A[i1][i1]; // a2の計算 for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) H1[i1][i2] = A[i1][i2]; H1[i1][i1] += a[1]; } a[2] = 0.0; for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) a[2] -= A[i1][i2] * H1[i2][i1]; } a[2] *= 0.5; // a3からanの計算 for (i1 = 3; i1 <= n; i1++) { for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) { H2[i2][i3] = 0.0; for (i4 = 0; i4 < n; i4++) H2[i2][i3] += A[i2][i4] * H1[i4][i3]; } H2[i2][i2] += a[i1-1]; } a[i1] = 0.0; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) a[i1] -= A[i2][i3] * H2[i3][i2]; } a[i1] /= i1; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) H1[i2][i3] = H2[i2][i3]; } } // ベアストウ法 ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0); return ind; } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b,c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* p : 答えの位置 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ static int Bairstow(int n, int ct, double eps, double p0, double q0, double a[], double b[], double c[], double rl[], double im[], int p) { double D, dp, dq, p1 = p0, p2 = 0.0, q1 = q0, q2 = 0.0; int i1, ind = 0, count = 0; /* 1次の場合 */ if (n == 1) { if (Math.abs(a[0]) < eps) ind = 1; else { rl[p] = -a[1] / a[0]; im[p] = 0.0; } } /* 2次の場合 */ else if (n == 2) { // 1次式 if (Math.abs(a[0]) < eps) { if (Math.abs(a[1]) < eps) ind = 1; else { rl[p] = -a[2] / a[1]; im[p] = 0.0; } } // 2次式 else { D = a[1] * a[1] - 4.0 * a[0] * a[2]; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); a[0] *= 2.0; rl[p] = -a[1] / a[0]; rl[p+1] = -a[1] / a[0]; im[p] = D / a[0]; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); a[0] = 1.0 / (2.0 * a[0]); rl[p] = a[0] * (-a[1] + D); rl[p+1] = a[0] * (-a[1] - D); im[p] = 0.0; im[p+1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 ind = 1; while (ind > 0 && count <= ct) { for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) b[i1] = a[i1]; else if (i1 == 1) b[i1] = a[i1] - p1 * b[i1-1]; else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]; } for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) c[i1] = b[i1]; else if (i1 == 1) c[i1] = b[i1] - p1 * c[i1-1]; else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]; } D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]); if (Math.abs(D) < eps) return ind; else { dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D; dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D; p2 = p1 + dp; q2 = q1 + dq; if (Math.abs(dp) < eps && Math.abs(dq) < eps) ind = 0; else { count++; p1 = p2; q1 = q2; } } } if (ind == 0) { // 2次方程式を解く D = p2 * p2 - 4.0 * q2; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); rl[p] = -0.5 * p2; rl[p+1] = -0.5 * p2; im[p] = 0.5 * D; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); rl[p] = 0.5 * (-p2 + D); rl[p+1] = 0.5 * (-p2 - D); im[p] = 0.0; im[p+1] = 0.0; } // 残りの方程式を解く n -= 2; for (i1 = 0; i1 <= n; i1++) a[i1] = b[i1]; ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2); } } return ind; } }
<!DOCTYPE HTML> <HTML> <HEAD> <TITLE>行列の固有値(フレーム法+ベアストウ法)</TITLE> <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8"> <SCRIPT TYPE="text/javascript"> function main() { // データの設定 let ct = parseInt(document.getElementById("trial").value); let eps = 1.0e-10; let p0 = parseFloat(document.getElementById("p0").value); let q0 = parseFloat(document.getElementById("q0").value); let n = parseInt(document.getElementById("order").value); let a = new Array(); let b = new Array(); let c = new Array(); let rl = new Array(); let im = Array(); let A = new Array(); for (let i1 = 0; i1 < n; i1++) A[i1] = new Array(); let s = (document.getElementById("ar").value).split(/ {1,}|\n{1,}/); let k = 0; for (let i1 = 0; i1 < n; i1++) { for (let i2 = 0; i2 < n; i2++) { A[i1][i2] = parseFloat(s[k]); k++; } } let H1 = new Array(); for (let i1 = 0; i1 < n; i1++) H1[i1] = new Array(); let H2 = new Array(); for (let i1 = 0; i1 < n; i1++) H2[i1] = new Array(); ind = frame(n, ct, eps, p0, q0, a, b, c, rl, im, A, H1, H2); // 出力 if (ind > 0) document.getElementById("ans").value = "解を求めることができません!"; else { let str = ""; for (let i1 = 0; i1 < n; i1++) str = str + rl[i1] + " i " + im[i1] + "\n"; document.getElementById("ans").value = str; } } /*************************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* A : 行列 */ /* H1, H2 : 作業域(nxnの行列) */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ function frame(n, ct, eps, p0, q0, a, b, c, rl, im, A, H1, H2) { let i1; let i2; let i3; let i4; let ind; a[0] = 1.0; // b1の計算 a[1] = 0.0; for (i1 = 0; i1 < n; i1++) a[1] -= A[i1][i1]; // b2の計算 for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) H1[i1][i2] = A[i1][i2]; H1[i1][i1] += a[1]; } a[2] = 0.0; for (i1 = 0; i1 < n; i1++) { for (i2 = 0; i2 < n; i2++) a[2] -= A[i1][i2] * H1[i2][i1]; } a[2] *= 0.5; // b3からbnの計算 for (i1 = 3; i1 <= n; i1++) { for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) { H2[i2][i3] = 0.0; for (i4 = 0; i4 < n; i4++) H2[i2][i3] += A[i2][i4] * H1[i4][i3]; } H2[i2][i2] += a[i1-1]; } a[i1] = 0.0; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) a[i1] -= A[i2][i3] * H2[i3][i2]; } a[i1] /= i1; for (i2 = 0; i2 < n; i2++) { for (i3 = 0; i3 < n; i3++) H1[i2][i3] = H2[i2][i3]; } } // ベアストウ法 ind = bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0); return ind; } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b,c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* p : 答えの位置 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ function bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p) { let D; let dp; let dq; let p1 = p0; let p2 = 0.0; let q1 = q0; let q2 = 0.0; let i1; let ind = 0; let count = 0; /* 1次の場合 */ if (n == 1) { if (Math.abs(a[0]) < eps) ind = 1; else { rl[p] = -a[1] / a[0]; im[p] = 0.0; } } /* 2次の場合 */ else if (n == 2) { // 1次式 if (Math.abs(a[0]) < eps) { if (Math.abs(a[1]) < eps) ind = 1; else { rl[p] = -a[2] / a[1]; im[p] = 0.0; } } // 2次式 else { D = a[1] * a[1] - 4.0 * a[0] * a[2]; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); a[0] *= 2.0; rl[p] = -a[1] / a[0]; rl[p+1] = -a[1] / a[0]; im[p] = D / a[0]; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); a[0] = 1.0 / (2.0 * a[0]); rl[p] = a[0] * (-a[1] + D); rl[p+1] = a[0] * (-a[1] - D); im[p] = 0.0; im[p+1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 ind = 1; while (ind > 0 && count <= ct) { for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) b[i1] = a[i1]; else if (i1 == 1) b[i1] = a[i1] - p1 * b[i1-1]; else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]; } for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) c[i1] = b[i1]; else if (i1 == 1) c[i1] = b[i1] - p1 * c[i1-1]; else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]; } D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]); if (Math.abs(D) < eps) return ind; else { dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D; dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D; p2 = p1 + dp; q2 = q1 + dq; if (Math.abs(dp) < eps && Math.abs(dq) < eps) ind = 0; else { count++; p1 = p2; q1 = q2; } } } if (ind == 0) { // 2次方程式を解く D = p2 * p2 - 4.0 * q2; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); rl[p] = -0.5 * p2; rl[p+1] = -0.5 * p2; im[p] = 0.5 * D; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); rl[p] = 0.5 * (-p2 + D); rl[p+1] = 0.5 * (-p2 - D); im[p] = 0.0; im[p+1] = 0.0; } // 残りの方程式を解く n -= 2; for (i1 = 0; i1 <= n; i1++) a[i1] = b[i1]; ind = bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2); } } return ind; } </SCRIPT> </HEAD> <BODY STYLE="font-size: 130%; background-color: #eeffee;"> <H2 STYLE="text-align:center"><B>行列の固有値(フレーム法+ベアストウ法)</B></H2> <DL> <DT> テキストフィールドおよびテキストエリアには,例として,以下に示す行列の固有値を求める場合に対する値が設定されています.他の問題を実行する場合は,それらを適切に修正してください. <P STYLE="text-align:center"><IMG SRC="eigen.gif"></P> </DL> <DIV STYLE="text-align:center"> 次数:<INPUT ID="order" STYLE="font-size: 100%" TYPE="text" SIZE="2" VALUE="3"> p0:<INPUT ID="p0" STYLE="font-size: 100%;" TYPE="text" SIZE="2" VALUE="0"> q0:<INPUT ID="q0" STYLE="font-size: 100%;" TYPE="text" SIZE="2" VALUE="0"> 最大繰り返し回数:<INPUT ID="trial" STYLE="font-size: 100%;" TYPE="text" SIZE="4" VALUE="1000"> <BUTTON STYLE="font-size: 100%; background-color: pink" onClick="main()">OK</BUTTON><BR><BR> <TEXTAREA ID="ar" COLS="50" ROWS="15" STYLE="font-size: 100%">7 2 1 2 1 -4 1 -4 2</TEXTAREA><BR><BR> <TEXTAREA ID="ans" COLS="50" ROWS="15" STYLE="font-size: 100%"></TEXTAREA> </DIV> </BODY> </HTML>
<?php /********************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* coded by Y.Suganuma */ /********************************************/ // データの設定 $ct = 1000; $eps = 1.0e-10; $p0 = 0.0; $q0 = 0.0; $n = 3; $a = array($n+1); $b = array($n+1); $c = array($n+1); $rl = array($n); $im = array($n); $A = array($n); $H1 = array($n); $H2 = array($n); for ($i1 = 0; $i1 < $n; $i1++) { $A[$i1] = array($n); $H1[$i1] = array($n); $H2[$i1] = array($n); } $A[0][0] = 7.0; $A[0][1] = 2.0; $A[0][2] = 1.0; $A[1][0] = 2.0; $A[1][1] = 1.0; $A[1][2] = -4.0; $A[2][0] = 1.0; $A[2][1] = -4.0; $A[2][2] = 2.0; // 計算 $ind = Frame($n, $ct, $eps, $p0, $q0, $a, $b, $c, $rl, $im, $A, $H1, $H2); // 出力 if ($ind > 0) printf("収束しませんでした!\n"); else { for ($i1 = 0; $i1 < $n; $i1++) printf(" %f i %f\n", $rl[$i1], $im[$i1]); } /*************************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* A : 行列 */ /* H1, H2 : 作業域(nxnの行列) */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ function Frame($n, $ct, $eps, $p0, $q0, $a, $b, $c, &$rl, &$im, $A, $H1, $H2) { $a[0] = 1.0; // a1の計算 $a[1] = 0.0; for ($i1 = 0; $i1 < $n; $i1++) $a[1] -= $A[$i1][$i1]; // a2の計算 for ($i1 = 0; $i1 < $n; $i1++) { for ($i2 = 0; $i2 < $n; $i2++) $H1[$i1][$i2] = $A[$i1][$i2]; $H1[$i1][$i1] += $a[1]; } $a[2] = 0.0; for ($i1 = 0; $i1 < $n; $i1++) { for ($i2 = 0; $i2 < $n; $i2++) $a[2] -= $A[$i1][$i2] * $H1[$i2][$i1]; } $a[2] *= 0.5; // a3からanの計算 for ($i1 = 3; $i1 <= $n; $i1++) { for ($i2 = 0; $i2 < $n; $i2++) { for ($i3 = 0; $i3 < $n; $i3++) { $H2[$i2][$i3] = 0.0; for ($i4 = 0; $i4 < $n; $i4++) $H2[$i2][$i3] += $A[$i2][$i4] * $H1[$i4][$i3]; } $H2[$i2][$i2] += $a[$i1-1]; } $a[$i1] = 0.0; for ($i2 = 0; $i2 < $n; $i2++) { for ($i3 = 0; $i3 < $n; $i3++) $a[$i1] -= $A[$i2][$i3] * $H2[$i3][$i2]; } $a[$i1] /= $i1; for ($i2 = 0; $i2 < $n; $i2++) { for ($i3 = 0; $i3 < $n; $i3++) $H1[$i2][$i3] = $H2[$i2][$i3]; } } // ベアストウ法 $ind = Bairstow($n, $ct, $eps, $p0, $q0, $a, $b, $c, $rl, $im, 0); return $ind; } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b,c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* k : 結果を設定する配列の位置 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ function Bairstow($n, $ct, $eps, $p0, $q0, $a, $b, $c, &$rl, &$im, $k) { $p1 = $p0; $p2 = 0.0; $q1 = $q0; $q2 = 0.0; $ind = 0; $count = 0; /* 1次の場合 */ if ($n == 1) { if (abs($a[0]) < $eps) $ind = 1; else { $rl[$k] = -$a[1] / $a[0]; $im[$k] = 0.0; } } /* 2次の場合 */ else if ($n == 2) { // 1次式 if (abs($a[0]) < $eps) { if (abs($a[1]) < $eps) $ind = 1; else { $rl[$k] = -$a[2] / $a[1]; $im[$k] = 0.0; } } // 2次式 else { $D = $a[1] * $a[1] - 4.0 * $a[0] * $a[2]; if ($D < 0.0) { // 虚数 $D = sqrt(-$D); $a[0] *= 2.0; $rl[$k] = -$a[1] / $a[0]; $rl[$k+1] = -$a[1] / $a[0]; $im[$k] = $D / $a[0]; $im[$k+1] = -$im[$k]; } else { // 実数 $D = sqrt($D); $a[0] = 1.0 / (2.0 * $a[0]); $rl[$k] = $a[0] * (-$a[1] + $D); $rl[$k+1] = $a[0] * (-$a[1] - $D); $im[$k] = 0.0; $im[$k+1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 $ind = 1; while ($ind > 0 && $count <= $ct) { for ($i1 = 0; $i1 <= $n; $i1++) { if ($i1 == 0) $b[$i1] = $a[$i1]; else if ($i1 == 1) $b[$i1] = $a[$i1] - $p1 * $b[$i1-1]; else $b[$i1] = $a[$i1] - $p1 * $b[$i1-1] - $q1 * $b[$i1-2]; } for ($i1 = 0; $i1 <= $n; $i1++) { if ($i1 == 0) $c[$i1] = $b[$i1]; else if ($i1 == 1) $c[$i1] = $b[$i1] - $p1 * $c[$i1-1]; else $c[$i1] = $b[$i1] - $p1 * $c[$i1-1] - $q1 * $c[$i1-2]; } $D = $c[$n-2] * $c[$n-2] - $c[$n-3] * ($c[$n-1] - $b[$n-1]); if (abs($D) < $eps) return $ind; else { $dp = ($b[$n-1] * $c[$n-2] - $b[$n] * $c[$n-3]) / $D; $dq = ($b[$n] * $c[$n-2] - $b[$n-1] * ($c[$n-1] - $b[$n-1])) / $D; $p2 = $p1 + $dp; $q2 = $q1 + $dq; if (abs($dp) < $eps && abs($dq) < $eps) $ind = 0; else { $count++; $p1 = $p2; $q1 = $q2; } } } if ($ind == 0) { // 2次方程式を解く $D = $p2 * $p2 - 4.0 * $q2; if ($D < 0.0) { // 虚数 $D = sqrt(-$D); $rl[$k] = -0.5 * $p2; $rl[$k+1] = -0.5 * $p2; $im[$k] = 0.5 * $D; $im[$k+1] = -$im[$k]; } else { // 実数 $D = sqrt($D); $rl[$k] = 0.5 * (-$p2 + $D); $rl[$k+1] = 0.5 * (-$p2 - $D); $im[$k] = 0.0; $im[$k+1] = 0.0; } // 残りの方程式を解く $n -= 2; for ($i1 = 0; $i1 <= $n; $i1++) $a[$i1] = $b[$i1]; $ind = Bairstow($n, $ct, $eps, $p0, $q0, $a, $b, $c, $rl, $im, $k+2); } } return $ind; } ?>
#*******************************************/ # 行列の固有値(フレーム法+ベアストウ法) */ # coded by Y.Suganuma */ #*******************************************/ #************************************************/ # 行列の固有値(フレーム法+ベアストウ法) */ # n : 次数 */ # ct : 最大繰り返し回数 */ # eps : 収束判定条件 */ # p0, q0 : x2+px+qにおけるp,qの初期値 */ # a : 係数(最高次から与え,値は変化する) */ # b, c : 作業域((n+1)次の配列) */ # rl, im : 結果の実部と虚部 */ # aa : 行列 */ # h1, h2 : 作業域(nxnの行列) */ # return : =0 : 正常 */ # =1 : 収束せず */ # coded by Y.Suganuma */ #************************************************/ def Frame(n, ct, eps, p0, q0, a, b, c, rl, im, aa, h1, h2) a[0] = 1.0 # a1の計算 a[1] = 0.0 for i1 in 0 ... n a[1] -= aa[i1][i1] end # a2の計算 for i1 in 0 ... n for i2 in 0 ... n h1[i1][i2] = aa[i1][i2] end h1[i1][i1] += a[1] end a[2] = 0.0 for i1 in 0 ... n for i2 in 0 ... n a[2] -= aa[i1][i2] * h1[i2][i1] end end a[2] *= 0.5 # a3からanの計算 for i1 in 3 ... n+1 for i2 in 0 ... n for i3 in 0 ... n h2[i2][i3] = 0.0 for i4 in 0 ... n h2[i2][i3] += aa[i2][i4] * h1[i4][i3] end end h2[i2][i2] += a[i1-1] end a[i1] = 0.0 for i2 in 0 ... n for i3 in 0 ... n a[i1] -= aa[i2][i3] * h2[i3][i2] end end a[i1] /= i1 for i2 in 0 ... n for i3 in 0 ... n h1[i2][i3] = h2[i2][i3] end end end # ベアストウ法 ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0) return ind end #************************************************/ # 実係数代数方程式の解(ベアストウ法) */ # n : 次数 */ # ct : 最大繰り返し回数 */ # eps : 収束判定条件 */ # p0, q0 : x2+px+qにおけるp,qの初期値 */ # a : 係数(最高次から与え,値は変化する) */ # b,c : 作業域((n+1)次の配列) */ # rl, im : 結果の実部と虚部 */ # k : 結果の位置 */ # return : =0 : 正常 */ # =1 : 収束せず */ # coded by Y.Suganuma */ #************************************************/ def Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, k) # 初期設定 p1 = p0 p2 = 0.0 q1 = q0 q2 = 0.0 ind = 0 count = 0 # # 1次の場合 # if n == 1 if a[0].abs() < eps ind = 1 else rl[k] = -a[1] / a[0] im[k] = 0.0 end # # 2次の場合 # elsif n == 2 # 1次式 if a[0].abs() < eps if a[1].abs() < eps ind = 1 else rl[k] = -a[2] / a[1] im[k] = 0.0 end # 2次式 else d = a[1] * a[1] - 4.0 * a[0] * a[2] if d < 0.0 # 虚数 d = Math.sqrt(-d) a[0] *= 2.0 rl[k] = -a[1] / a[0] rl[k+1] = -a[1] / a[0] im[k] = d / a[0] im[k+1] = -im[0] else # 実数 d = Math.sqrt(d) a[0] = 1.0 / (2.0 * a[0]) rl[k] = a[0] * (-a[1] + d) rl[k+1] = a[0] * (-a[1] - d) im[k] = 0.0 im[k+1] = 0.0 end end # 3次以上の場合 else # 因数分解 ind = 1 while ind > 0 && count <= ct for i1 in 0 ... n+1 if i1 == 0 b[i1] = a[i1] elsif i1 == 1 b[i1] = a[i1] - p1 * b[i1-1] else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2] end end for i1 in 0 ... n+1 if i1 == 0 c[i1] = b[i1] elsif i1 == 1 c[i1] = b[i1] - p1 * c[i1-1] else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2] end end d = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]) if d.abs() < eps return ind else dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / d dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / d p2 = p1 + dp q2 = q1 + dq if dp.abs() < eps && dq.abs() < eps ind = 0 else count += 1 p1 = p2 q1 = q2 end end end if ind == 0 # 2次方程式を解く d = p2 * p2 - 4.0 * q2 if d < 0.0 # 虚数 d = Math.sqrt(-d) rl[k] = -0.5 * p2 rl[k+1] = -0.5 * p2 im[k] = 0.5 * d im[k+1] = -im[k] else # 実数 d = Math.sqrt(d) rl[k] = 0.5 * (-p2 + d) rl[k+1] = 0.5 * (-p2 - d) im[k] = 0.0 im[k+1] = 0.0 end # 残りの方程式を解く n -= 2 for i1 in 0 ... n+1 a[i1] = b[i1] end ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, k+2) end end return ind end # データの設定 ct = 1000 eps = 1.0e-10 p0 = 0.0 q0 = 0.0 n = 3 a = Array.new(n+1) b = Array.new(n+1) c = Array.new(n+1) rl = Array.new(n) im = Array.new(n) aa = Array.new(n) h1 = Array.new(n) h2 = Array.new(n) for i1 in 0 ... n aa[i1] = Array.new(n) h1[i1] = Array.new(n) h2[i1] = Array.new(n) end aa[0][0] = 7.0 aa[0][1] = 2.0 aa[0][2] = 1.0 aa[1][0] = 2.0 aa[1][1] = 1.0 aa[1][2] = -4.0 aa[2][0] = 1.0 aa[2][1] = -4.0 aa[2][2] = 2.0 # 計算 ind = Frame(n, ct, eps, p0, q0, a, b, c, rl, im, aa, h1, h2) # 出力 if ind > 0 printf("収束しませんでした!\n") else for i1 in 0 ... n printf(" %f i %f\n", rl[i1], im[i1]) end end
# -*- coding: UTF-8 -*- import numpy as np from math import * ############################################ # 行列の固有値(フレーム法+ベアストウ法) # n : 次数 # ct : 最大繰り返し回数 # eps : 収束判定条件 # p0, q0 : x2+px+qにおけるp,qの初期値 # a : 係数(最高次から与え,値は変化する) # b, c : 作業域((n+1)次の配列) # r : 結果 # A : 行列 # H1, H2 : 作業域(nxnの行列) # return : =0 : 正常 # =1 : 収束せず # coded by Y.Suganuma ############################################ def Frame(n, ct, eps, p0, q0, a, b, c, r, A, H1, H2) : a[0] = 1.0 # a1の計算 a[1] = 0.0 for i1 in range(0, n) : a[1] -= A[i1][i1] # a2の計算 for i1 in range(0, n) : for i2 in range(0, n) : H1[i1][i2] = A[i1][i2] H1[i1][i1] += a[1] a[2] = 0.0 for i1 in range(0, n) : for i2 in range(0, n) : a[2] -= A[i1][i2] * H1[i2][i1] a[2] *= 0.5 # a3からanの計算 for i1 in range(3, n+1) : for i2 in range(0, n) : for i3 in range(0, n) : H2[i2][i3] = 0.0 for i4 in range(0, n) : H2[i2][i3] += A[i2][i4] * H1[i4][i3] H2[i2][i2] += a[i1-1] a[i1] = 0.0 for i2 in range(0, n) : for i3 in range(0, n) : a[i1] -= A[i2][i3] * H2[i3][i2] a[i1] /= i1 for i2 in range(0, n) : for i3 in range(0, n) : H1[i2][i3] = H2[i2][i3] # ベアストウ法 ind = Bairstow(n, ct, eps, p0, q0, a, b, c, r, 0) return ind ############################################ # 実係数代数方程式の解(ベアストウ法) # n : 次数 # ct : 最大繰り返し回数 # eps : 収束判定条件 # p0, q0 : x2+px+qにおけるp,qの初期値 # a : 係数(最高次から与え,値は変化する) # b,c : 作業域((n+1)次の配列) # r : 結果 # k : 結果の位置 # return : =0 : 正常 # =1 : 収束せず # coded by Y.Suganuma ############################################ def Bairstow(n, ct, eps, p0, q0, a, b, c, r, k) : p1 = p0 p2 = 0.0 q1 = q0 q2 = 0.0 ind = 0 count = 0 # 1次の場合 if n == 1 : if abs(a[0]) < eps : ind = 1 else : r[k] = complex(-a[1] / a[0], 0) # 2次の場合 elif n == 2 : # 1次式 if abs(a[0]) < eps : if abs(a[1]) < eps : ind = 1 else : r[k] = complex(-a[2] / a[1], 0) # 2次式 else : D = a[1] * a[1] - 4.0 * a[0] * a[2] if D < 0.0 : # 虚数 D = sqrt(-D) a[0] *= 2.0 r[k] = complex(-a[1] / a[0], D / a[0]) r[k+1] = complex(-a[1] / a[0], -D / a[0]) else : # 実数 D = sqrt(D) a[0] = 1.0 / (2.0 * a[0]) r[k] = complex(a[0] * (-a[1] + D), 0) r[k+1] = complex(a[0] * (-a[1] - D), 0) # 3次以上の場合 else : # 因数分解 ind = 1 while ind > 0 and count <= ct : for i1 in range(0, n+1) : if i1 == 0 : b[i1] = a[i1] elif i1 == 1 : b[i1] = a[i1] - p1 * b[i1-1] else : b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2] for i1 in range(0, n+1) : if i1 == 0 : c[i1] = b[i1] elif i1 == 1 : c[i1] = b[i1] - p1 * c[i1-1] else : c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2] D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]) if fabs(D) < eps : return ind else : dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D p2 = p1 + dp q2 = q1 + dq if abs(dp) < eps and fabs(dq) < eps : ind = 0 else : count += 1 p1 = p2 q1 = q2 if ind == 0 : # 2次方程式を解く D = p2 * p2 - 4.0 * q2 if D < 0.0 : # 虚数 D = sqrt(-D) r[k] = complex(-0.5 * p2, 0.5 * D) r[k+1] = complex(-0.5 * p2, -0.5 * D) else : # 実数 D = sqrt(D) r[k] = complex(0.5 * (-p2 + D), 0) r[k+1] = complex(0.5 * (-p2 - D), 0) # 残りの方程式を解く n -= 2 for i1 in range(0, n+1) : a[i1] = b[i1] ind = Bairstow(n, ct, eps, p0, q0, a, b, c, r, k+2) return ind ############################################ # 行列の固有値(フレーム法+ベアストウ法) */ # coded by Y.Suganuma */ ############################################ # データの設定 ct = 1000 eps = 1.0e-10 p0 = 0.0 q0 = 0.0 n = 3 a = np.empty(n+1, np.float) b = np.empty(n+1, np.float) c = np.empty(n+1, np.float) r = np.empty(n, np.complex) A = np.array([[7, 2, 1],[2, 1, -4],[1, -4, 2]], np.float) H1 = np.empty((n, n), np.float) H2 = np.empty((n, n), np.float) # 計算 ind = Frame(n, ct, eps, p0, q0, a, b, c, r, A, H1, H2) # 出力 if ind > 0 : print("収束しませんでした!") else : for i1 in range(0, n) : print(" " + str(r[i1]))
/********************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* coded by Y.Suganuma */ /********************************************/ using System; class Program { static void Main() { Test1 ts = new Test1(); } } class Test1 { public Test1() { // データの設定 int ct = 1000; int n = 3; double eps = 1.0e-10; double p0 = 0.0; double q0 = 0.0; double[] a = new double [n+1]; double[] b = new double [n+1]; double[] c = new double [n+1]; double[] rl = new double [n]; double[] im = new double [n]; double[][] A = new double [][] { new double[] {7.0, 2.0, 1.0}, new double[] {2.0, 1.0, -4.0}, new double[] {1.0, -4.0, 2.0} }; double[][] H1 = new double [n][]; double[][] H2 = new double [n][]; for (int i1 = 0; i1 < n; i1++) { H1[i1] = new double [n]; H2[i1] = new double [n]; } // 計算 int ind = Frame(n, ct, eps, p0, q0, a, b, c, rl, im, A, H1, H2); // 出力 if (ind > 0) Console.WriteLine("収束しませんでした!"); else { for (int i1 = 0; i1 < n; i1++) Console.WriteLine(" " + rl[i1] + " i " + im[i1]); } } /*************************************************/ /* 行列の固有値(フレーム法+ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b, c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* A : 行列 */ /* H1, H2 : 作業域(nxnの行列) */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ int Frame(int n, int ct, double eps, double p0, double q0, double[] a, double[] b, double[] c, double[] rl, double[] im, double[][] A, double[][] H1, double[][] H2) { a[0] = 1.0; // a1の計算 a[1] = 0.0; for (int i1 = 0; i1 < n; i1++) a[1] -= A[i1][i1]; // a2の計算 for (int i1 = 0; i1 < n; i1++) { for (int i2 = 0; i2 < n; i2++) H1[i1][i2] = A[i1][i2]; H1[i1][i1] += a[1]; } a[2] = 0.0; for (int i1 = 0; i1 < n; i1++) { for (int i2 = 0; i2 < n; i2++) a[2] -= A[i1][i2] * H1[i2][i1]; } a[2] *= 0.5; // a3からanの計算 for (int i1 = 3; i1 <= n; i1++) { for (int i2 = 0; i2 < n; i2++) { for (int i3 = 0; i3 < n; i3++) { H2[i2][i3] = 0.0; for (int i4 = 0; i4 < n; i4++) H2[i2][i3] += A[i2][i4] * H1[i4][i3]; } H2[i2][i2] += a[i1-1]; } a[i1] = 0.0; for (int i2 = 0; i2 < n; i2++) { for (int i3 = 0; i3 < n; i3++) a[i1] -= A[i2][i3] * H2[i3][i2]; } a[i1] /= i1; for (int i2 = 0; i2 < n; i2++) { for (int i3 = 0; i3 < n; i3++) H1[i2][i3] = H2[i2][i3]; } } // ベアストウ法 int ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0); return ind; } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b,c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* p : 答えの位置 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ static int Bairstow(int n, int ct, double eps, double p0, double q0, double[] a, double[] b, double[] c, double[] rl, double[] im, int p) { int ind = 0; /* 1次の場合 */ if (n == 1) { if (Math.Abs(a[0]) < eps) ind = 1; else { rl[p] = -a[1] / a[0]; im[p] = 0.0; } } /* 2次の場合 */ else if (n == 2) { double D; // 1次式 if (Math.Abs(a[0]) < eps) { if (Math.Abs(a[1]) < eps) ind = 1; else { rl[p] = -a[2] / a[1]; im[p] = 0.0; } } // 2次式 else { D = a[1] * a[1] - 4.0 * a[0] * a[2]; if (D < 0.0) { // 虚数 D = Math.Sqrt(-D); a[0] *= 2.0; rl[p] = -a[1] / a[0]; rl[p+1] = -a[1] / a[0]; im[p] = D / a[0]; im[p+1] = -im[p]; } else { // 実数 D = Math.Sqrt(D); a[0] = 1.0 / (2.0 * a[0]); rl[p] = a[0] * (-a[1] + D); rl[p+1] = a[0] * (-a[1] - D); im[p] = 0.0; im[p+1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 ind = 1; int count = 0; double D, dp, dq, p1 = p0, p2 = 0.0, q1 = q0, q2 = 0.0; while (ind > 0 && count <= ct) { for (int i1 = 0; i1 <= n; i1++) { if (i1 == 0) b[i1] = a[i1]; else if (i1 == 1) b[i1] = a[i1] - p1 * b[i1-1]; else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]; } for (int i1 = 0; i1 <= n; i1++) { if (i1 == 0) c[i1] = b[i1]; else if (i1 == 1) c[i1] = b[i1] - p1 * c[i1-1]; else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]; } D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]); if (Math.Abs(D) < eps) return ind; else { dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D; dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D; p2 = p1 + dp; q2 = q1 + dq; if (Math.Abs(dp) < eps && Math.Abs(dq) < eps) ind = 0; else { count++; p1 = p2; q1 = q2; } } } if (ind == 0) { // 2次方程式を解く D = p2 * p2 - 4.0 * q2; if (D < 0.0) { // 虚数 D = Math.Sqrt(-D); rl[p] = -0.5 * p2; rl[p+1] = -0.5 * p2; im[p] = 0.5 * D; im[p+1] = -im[p]; } else { // 実数 D = Math.Sqrt(D); rl[p] = 0.5 * (-p2 + D); rl[p+1] = 0.5 * (-p2 - D); im[p] = 0.0; im[p+1] = 0.0; } // 残りの方程式を解く n -= 2; for (int i1 = 0; i1 <= n; i1++) a[i1] = b[i1]; ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2); } } return ind; } }
'''''''''''''''''''''''''''''''''''''''''''' ' 行列の固有値(フレーム法+ベアストウ法) ' ' coded by Y.Suganuma ' '''''''''''''''''''''''''''''''''''''''''''' Module Test Sub Main() ' データの設定 Dim ct As Integer = 1000 Dim n As Integer = 3 Dim eps As Double = 1.0e-10 Dim p0 As Double = 0.0 Dim q0 As Double = 0.0 Dim a(n+1) As Double Dim b(n+1) As Double Dim c(n+1) As Double Dim rl(n) As Double Dim im(n) As Double Dim AA(,) As Double = {{7.0, 2.0, 1.0}, {2.0, 1.0, -4.0}, {1.0, -4.0, 2.0}} Dim H1(n,n) As Double Dim H2(n,n) As Double ' 計算 Dim ind As Integer = Frame(n, ct, eps, p0, q0, a, b, c, rl, im, AA, H1, H2) ' 出力 If ind > 0 Console.WriteLine("収束しませんでした!") Else For i1 As Integer = 0 To n-1 Console.WriteLine(" " & rl(i1) & " i " & im(i1)) Next End If End Sub ''''''''''''''''''''''''''''''''''''''''''''''''' ' 行列の固有値(フレーム法+ベアストウ法) ' ' n : 次数 ' ' ct : 最大繰り返し回数 ' ' eps : 収束判定条件 ' ' p0, q0 : x2+px+qにおけるp,qの初期値 ' ' a : 係数(最高次から与え,値は変化する) ' ' b, c : 作業域((n+1)次の配列) ' ' rl, im : 結果の実部と虚部 ' ' AA : 行列 ' ' H1, H2 : 作業域(nxnの行列) ' ' return : =0 : 正常 ' ' =1 : 収束せず ' ' coded by Y.Suganuma ' ''''''''''''''''''''''''''''''''''''''''''''''''' Function Frame(n As Integer, ct As Integer, eps As Double, p0 As Double, q0 As Double, a() As Double, b() As Double, c() As Double, rl() As Double, im() As Double, AA(,) As Double, H1(,) As Double, H2(,) As Double) a(0) = 1.0 ' a1の計算 a(1) = 0.0 For i1 As Integer = 0 To n-1 a(1) -= AA(i1,i1) Next ' a2の計算 For i1 As Integer = 0 To n-1 For i2 As Integer = 0 To n-1 H1(i1,i2) = AA(i1,i2) Next H1(i1,i1) += a(1) Next a(2) = 0.0 For i1 As Integer = 0 To n-1 For i2 As Integer = 0 To n-1 a(2) -= AA(i1,i2) * H1(i2,i1) Next Next a(2) *= 0.5 ' a3からanの計算 For i1 As Integer = 3 To n For i2 As Integer = 0 To n-1 For i3 As Integer = 0 To n-1 H2(i2,i3) = 0.0 For i4 As Integer = 0 To n-1 H2(i2,i3) += AA(i2,i4) * H1(i4,i3) Next Next H2(i2,i2) += a(i1-1) Next a(i1) = 0.0 For i2 As Integer = 0 To n-1 For i3 As Integer = 0 To n-1 a(i1) -= AA(i2,i3) * H2(i3,i2) Next Next a(i1) /= i1 For i2 As Integer = 0 To n-1 For i3 As Integer = 0 To n-1 H1(i2,i3) = H2(i2,i3) Next Next Next ' ベアストウ法 Dim ind As Integer = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0) Return ind End Function ''''''''''''''''''''''''''''''''''''''''''''''''' ' 実係数代数方程式の解(ベアストウ法) ' ' n : 次数 ' ' ct : 最大繰り返し回数 ' ' eps : 収束判定条件 ' ' p0, q0 : x2+px+qにおけるp,qの初期値 ' ' a : 係数(最高次から与え,値は変化する) ' ' b,c : 作業域((n+1)次の配列) ' ' rl, im : 結果の実部と虚部 ' ' p : 答えの位置 ' ' return : =0 : 正常 ' ' =1 : 収束せず ' ' coded by Y.Suganuma ' ''''''''''''''''''''''''''''''''''''''''''''''''' Function Bairstow(n As Integer, ct As Integer, eps As Double, p0 As Double, q0 As Double, a() As Double, b() As Double, c() As Double, rl() As Double, im() As Double, p As Integer) Dim ind As Integer = 0 ' ' 1次の場合 ' If n = 1 If Math.Abs(a(0)) < eps ind = 1 Else rl(p) = -a(1) / a(0) im(p) = 0.0 End If ' ' 2次の場合 ' ElseIf n = 2 Dim D As Double ' 1次式 If Math.Abs(a(0)) < eps If Math.Abs(a(1)) < eps ind = 1 Else rl(p) = -a(2) / a(1) im(p) = 0.0 End If ' 2次式 Else D = a(1) * a(1) - 4.0 * a(0) * a(2) If D < 0.0 ' 虚数 D = Math.Sqrt(-D) a(0) *= 2.0 rl(p) = -a(1) / a(0) rl(p+1) = -a(1) / a(0) im(p) = D / a(0) im(p+1) = -im(p) Else ' 実数 D = Math.Sqrt(D) a(0) = 1.0 / (2.0 * a(0)) rl(p) = a(0) * (-a(1) + D) rl(p+1) = a(0) * (-a(1) - D) im(p) = 0.0 im(p+1) = 0.0 End If End If ' 3次以上の場合 Else ' 因数分解 ind = 1 Dim count As Integer = 0 Dim D As Double Dim dp As Double Dim dq As Double Dim p1 As Double = p0 Dim p2 As Double = 0.0 Dim q1 As Double = q0 Dim q2 As Double = 0.0 Do While ind > 0 and count <= ct For i1 As Integer = 0 To n If i1 = 0 b(i1) = a(i1) ElseIf i1 = 1 b(i1) = a(i1) - p1 * b(i1-1) Else b(i1) = a(i1) - p1 * b(i1-1) - q1 * b(i1-2) End If Next For i1 As Integer = 0 To n If i1 = 0 c(i1) = b(i1) ElseIf i1 = 1 c(i1) = b(i1) - p1 * c(i1-1) Else c(i1) = b(i1) - p1 * c(i1-1) - q1 * c(i1-2) End If Next D = c(n-2) * c(n-2) - c(n-3) * (c(n-1) - b(n-1)) If Math.Abs(D) < eps Return ind Else dp = (b(n-1) * c(n-2) - b(n) * c(n-3)) / D dq = (b(n) * c(n-2) - b(n-1) * (c(n-1) - b(n-1))) / D p2 = p1 + dp q2 = q1 + dq If Math.Abs(dp) < eps and Math.Abs(dq) < eps ind = 0 Else count += 1 p1 = p2 q1 = q2 End If End If Loop If ind = 0 ' 2次方程式を解く D = p2 * p2 - 4.0 * q2 If D < 0.0 ' 虚数 D = Math.Sqrt(-D) rl(p) = -0.5 * p2 rl(p+1) = -0.5 * p2 im(p) = 0.5 * D im(p+1) = -im(p) Else ' 実数 D = Math.Sqrt(D) rl(p) = 0.5 * (-p2 + D) rl(p+1) = 0.5 * (-p2 - D) im(p) = 0.0 im(p+1) = 0.0 End If ' 残りの方程式を解く n -= 2 For i1 As Integer = 0 To n a(i1) = b(i1) Next ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2) End If End If Return ind End Function End Module
情報学部 | 菅沼ホーム | 目次 | 索引 |