back propagation model
学習回数:
実行
構造データ
入力ユニット数 2 出力ユニット数 1 関数タイプ 0 隠れ層の数 1 各隠れ層のユニット数(下から) 1 バイアス入力ユニット数 1 ユニット番号:出力ユニットから順に番号付け 入力方法:=-3:固定,=-2:入力後学習,=-1:乱数(default,[-0.1,0.1])) 値:バイアス値(ー2またはー3の時)または一様乱数の範囲(下限,上限) 1 -1 -0.1 0.1 接続方法の数 2 ユニット番号:ユニットk1からk2を,k3からk4に接続 接続方法:=0:接続なし,=1:乱数,=2:重み入力後学習,=3:重み固定 値:重み(2または3の時)または一様乱数の範囲(1の時:下限,上限) 3 4 1 2 1 -0.1 0.1 2 2 1 1 1 -0.1 0.1
制御データ
誤差 0.1 出力 2 出力ファイル kekka 順番 0 η 0.5 α 0.8
未学習パターン
パターンの数 4 入力ユニット数 2 出力ユニット数 1 入力1 0 0 出力1 0 入力2 0 1 出力2 1 入力3 1 0 出力3 1 入力4 1 1 出力4 0
学習パターン
パターンの数 4 入力ユニット数 2 出力ユニット数 1 入力1 0 0 出力1 0 入力2 0 1 出力2 1 入力3 1 0 出力3 1 入力4 1 1 出力4 0
結果