/*********************************************/ /* 多項式近似によるy=x^4+3x^3+2x^2+1の最小値 */ /* coded by Y.Suganuma */ /*********************************************/ #include <stdio.h> double snx(double); double approx(double, double, double, double *, int *, int, double (*)(double)); int main() { double eps, val, x, d; int ind, max; x = -2.0; d = 0.1; eps = 1.0e-10; max = 100; x = approx(x, d, eps, &val, &ind, max, snx); printf("x %f val %f ind %d\n", x, val, ind); return 0; } /****************/ /* 関数値の計算 */ /****************/ double snx(double x) { double f; f = x * x * x * x + 3.0 * x * x * x + 2.0 * x * x + 1.0; return f; } /******************************************/ /* 多項式近似(関数の最小値) */ /* x0 : 初期値 */ /* d0 : 初期ステップ */ /* eps : 許容誤差 */ /* val : 間数値 */ /* ind : 計算状況 */ /* >= 0 : 正常終了(収束回数) */ /* = -1 : 収束せず */ /* max : 最大試行回数 */ /* fun : 関数値を計算する関数の名前 */ /* return : 結果 */ /******************************************/ #include <math.h> double approx(double x0, double d0, double eps, double *val, int *ind, int max, double (*fun)(double)) { double f[4], x[4], xx = 0.0, d, dl; int i1, k = 0, count = 0, min, sw; d = d0; x[1] = x0; f[1] = fun(x0); *ind = -1; while (count < max && *ind < 0) { x[3] = x[1] + d; f[3] = fun(x[3]); while (k < max && f[3] <= f[1]) { k++; d *= 2.0; x[0] = x[1]; f[0] = f[1]; x[1] = x[3]; f[1] = f[3]; x[3] = x[1] + d; f[3] = fun(x[3]); } // 初期値が不適当 if (k >= max) count = max; else { // 3点の選択 sw = 0; if (k > 0) { x[2] = x[3] - 0.5 * d; f[2] = fun(x[2]); min = -1; for (i1 = 0; i1 < 4; i1++) { if (min < 0 || f[i1] < f[min]) min = i1; } if (min >= 2) { for (i1 = 0; i1 < 3; i1++) { x[i1] = x[i1+1]; f[i1] = f[i1+1]; } } sw = 1; } else { x[0] = x[1] - d0; f[0] = fun(x[0]); if (f[0] > f[1]) { x[2] = x[3]; f[2] = f[3]; sw = 1; } else { x[1] = x[0]; f[1] = f[0]; d0 = -d0; d = 2.0 * d0; k = 1; } } // 収束? if (sw > 0) { count++; dl = 0.5 * d * (f[2] - f[0]) / (f[0] - 2.0 * f[1] + f[2]); xx = x[1] - dl; *val = fun(xx); if (fabs(dl) < eps) *ind = count; else { k = 0; d0 = 0.5 * d; d = d0; if (*val < f[1]) { x[1] = xx; f[1] = *val; } } } } } return xx; }