/************************************/ /* 代数方程式の解(ベアストウ法) */ /* 例:(x+1)(x-2)(x-3)(x2+x+1) */ /* =x5-3x4-2x3+3x2+7x+6=0 */ /* coded by Y.Suganuma */ /************************************/ import java.io.*; public class Test { public static void main(String args[]) throws IOException { double a[], b[], c[], rl[], im[], p0, q0, eps; int i1, ind, ct, n; // データの設定 ct = 1000; eps = 1.0e-10; p0 = 0.0; q0 = 0.0; n = 5; a = new double [n+1]; b = new double [n+1]; c = new double [n+1]; rl = new double [n]; im = new double [n]; a[0] = 1.0; a[1] = -3.0; a[2] = -2.0; a[3] = 3.0; a[4] = 7.0; a[5] = 6.0; // 計算 ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0); // 出力 if (ind > 0) System.out.println("収束しませんでした!"); else { for (i1 = 0; i1 < n; i1++) System.out.println(" " + rl[i1] + " i " + im[i1]); } } /*************************************************/ /* 実係数代数方程式の解(ベアストウ法) */ /* n : 次数 */ /* ct : 最大繰り返し回数 */ /* eps : 収束判定条件 */ /* p0, q0 : x2+px+qにおけるp,qの初期値 */ /* a : 係数(最高次から与え,値は変化する) */ /* b,c : 作業域((n+1)次の配列) */ /* rl, im : 結果の実部と虚部 */ /* p : 答えの位置 */ /* return : =0 : 正常 */ /* =1 : 収束せず */ /* coded by Y.Suganuma */ /*************************************************/ static int Bairstow(int n, int ct, double eps, double p0, double q0, double a[], double b[], double c[], double rl[], double im[], int p) { double D, dp, dq, p1 = p0, p2 = 0.0, q1 = q0, q2 = 0.0; int i1, ind = 0, count = 0; /* 1次の場合 */ if (n == 1) { if (Math.abs(a[0]) < eps) ind = 1; else { rl[p] = -a[1] / a[0]; im[p] = 0.0; } } /* 2次の場合 */ else if (n == 2) { // 1次式 if (Math.abs(a[0]) < eps) { if (Math.abs(a[1]) < eps) ind = 1; else { rl[p] = -a[2] / a[1]; im[p] = 0.0; } } // 2次式 else { D = a[1] * a[1] - 4.0 * a[0] * a[2]; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); a[0] *= 2.0; rl[p] = -a[1] / a[0]; rl[p+1] = -a[1] / a[0]; im[p] = D / a[0]; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); a[0] = 1.0 / (2.0 * a[0]); rl[p] = a[0] * (-a[1] + D); rl[p+1] = a[0] * (-a[1] - D); im[p] = 0.0; im[p+1] = 0.0; } } } // 3次以上の場合 else { // 因数分解 ind = 1; while (ind > 0 && count <= ct) { for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) b[i1] = a[i1]; else if (i1 == 1) b[i1] = a[i1] - p1 * b[i1-1]; else b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]; } for (i1 = 0; i1 <= n; i1++) { if (i1 == 0) c[i1] = b[i1]; else if (i1 == 1) c[i1] = b[i1] - p1 * c[i1-1]; else c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]; } D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]); if (Math.abs(D) < eps) return ind; else { dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D; dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D; p2 = p1 + dp; q2 = q1 + dq; if (Math.abs(dp) < eps && Math.abs(dq) < eps) ind = 0; else { count++; p1 = p2; q1 = q2; } } } if (ind == 0) { // 2次方程式を解く D = p2 * p2 - 4.0 * q2; if (D < 0.0) { // 虚数 D = Math.sqrt(-D); rl[p] = -0.5 * p2; rl[p+1] = -0.5 * p2; im[p] = 0.5 * D; im[p+1] = -im[p]; } else { // 実数 D = Math.sqrt(D); rl[p] = 0.5 * (-p2 + D); rl[p+1] = 0.5 * (-p2 - D); im[p] = 0.0; im[p+1] = 0.0; } // 残りの方程式を解く n -= 2; for (i1 = 0; i1 <= n; i1++) a[i1] = b[i1]; ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2); } } return ind; } }