/************************************/
/* 代数方程式の解(ベアストウ法) */
/* 例:(x+1)(x-2)(x-3)(x2+x+1) */
/* =x5-3x4-2x3+3x2+7x+6=0 */
/* coded by Y.Suganuma */
/************************************/
import java.io.*;
public class Test {
public static void main(String args[]) throws IOException
{
double a[], b[], c[], rl[], im[], p0, q0, eps;
int i1, ind, ct, n;
// データの設定
ct = 1000;
eps = 1.0e-10;
p0 = 0.0;
q0 = 0.0;
n = 5;
a = new double [n+1];
b = new double [n+1];
c = new double [n+1];
rl = new double [n];
im = new double [n];
a[0] = 1.0;
a[1] = -3.0;
a[2] = -2.0;
a[3] = 3.0;
a[4] = 7.0;
a[5] = 6.0;
// 計算
ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0);
// 出力
if (ind > 0)
System.out.println("収束しませんでした!");
else {
for (i1 = 0; i1 < n; i1++)
System.out.println(" " + rl[i1] + " i " + im[i1]);
}
}
/*************************************************/
/* 実係数代数方程式の解(ベアストウ法) */
/* n : 次数 */
/* ct : 最大繰り返し回数 */
/* eps : 収束判定条件 */
/* p0, q0 : x2+px+qにおけるp,qの初期値 */
/* a : 係数(最高次から与え,値は変化する) */
/* b,c : 作業域((n+1)次の配列) */
/* rl, im : 結果の実部と虚部 */
/* p : 答えの位置 */
/* return : =0 : 正常 */
/* =1 : 収束せず */
/* coded by Y.Suganuma */
/*************************************************/
static int Bairstow(int n, int ct, double eps, double p0, double q0,
double a[], double b[], double c[], double rl[], double im[], int p)
{
double D, dp, dq, p1 = p0, p2 = 0.0, q1 = q0, q2 = 0.0;
int i1, ind = 0, count = 0;
/*
1次の場合
*/
if (n == 1) {
if (Math.abs(a[0]) < eps)
ind = 1;
else {
rl[p] = -a[1] / a[0];
im[p] = 0.0;
}
}
/*
2次の場合
*/
else if (n == 2) {
// 1次式
if (Math.abs(a[0]) < eps) {
if (Math.abs(a[1]) < eps)
ind = 1;
else {
rl[p] = -a[2] / a[1];
im[p] = 0.0;
}
}
// 2次式
else {
D = a[1] * a[1] - 4.0 * a[0] * a[2];
if (D < 0.0) { // 虚数
D = Math.sqrt(-D);
a[0] *= 2.0;
rl[p] = -a[1] / a[0];
rl[p+1] = -a[1] / a[0];
im[p] = D / a[0];
im[p+1] = -im[p];
}
else { // 実数
D = Math.sqrt(D);
a[0] = 1.0 / (2.0 * a[0]);
rl[p] = a[0] * (-a[1] + D);
rl[p+1] = a[0] * (-a[1] - D);
im[p] = 0.0;
im[p+1] = 0.0;
}
}
}
// 3次以上の場合
else {
// 因数分解
ind = 1;
while (ind > 0 && count <= ct) {
for (i1 = 0; i1 <= n; i1++) {
if (i1 == 0)
b[i1] = a[i1];
else if (i1 == 1)
b[i1] = a[i1] - p1 * b[i1-1];
else
b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2];
}
for (i1 = 0; i1 <= n; i1++) {
if (i1 == 0)
c[i1] = b[i1];
else if (i1 == 1)
c[i1] = b[i1] - p1 * c[i1-1];
else
c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2];
}
D = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1]);
if (Math.abs(D) < eps)
return ind;
else {
dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / D;
dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / D;
p2 = p1 + dp;
q2 = q1 + dq;
if (Math.abs(dp) < eps && Math.abs(dq) < eps)
ind = 0;
else {
count++;
p1 = p2;
q1 = q2;
}
}
}
if (ind == 0) {
// 2次方程式を解く
D = p2 * p2 - 4.0 * q2;
if (D < 0.0) { // 虚数
D = Math.sqrt(-D);
rl[p] = -0.5 * p2;
rl[p+1] = -0.5 * p2;
im[p] = 0.5 * D;
im[p+1] = -im[p];
}
else { // 実数
D = Math.sqrt(D);
rl[p] = 0.5 * (-p2 + D);
rl[p+1] = 0.5 * (-p2 - D);
im[p] = 0.0;
im[p+1] = 0.0;
}
// 残りの方程式を解く
n -= 2;
for (i1 = 0; i1 <= n; i1++)
a[i1] = b[i1];
ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, p+2);
}
}
return ind;
}
}