/*********************************************/
/* 多項式近似によるy=x^4+3x^3+2x^2+1の最小値 */
/* coded by Y.Suganuma */
/*********************************************/
#include <stdio.h>
double snx(double);
double approx(double, double, double, double *, int *, int, double (*)(double));
int main()
{
double eps, val, x, d;
int ind, max;
x = -2.0;
d = 0.1;
eps = 1.0e-10;
max = 100;
x = approx(x, d, eps, &val, &ind, max, snx);
printf("x %f val %f ind %d\n", x, val, ind);
return 0;
}
/****************/
/* 関数値の計算 */
/****************/
double snx(double x)
{
double f;
f = x * x * x * x + 3.0 * x * x * x + 2.0 * x * x + 1.0;
return f;
}
/******************************************/
/* 多項式近似(関数の最小値) */
/* x0 : 初期値 */
/* d0 : 初期ステップ */
/* eps : 許容誤差 */
/* val : 間数値 */
/* ind : 計算状況 */
/* >= 0 : 正常終了(収束回数) */
/* = -1 : 収束せず */
/* max : 最大試行回数 */
/* fun : 関数値を計算する関数の名前 */
/* return : 結果 */
/******************************************/
#include <math.h>
double approx(double x0, double d0, double eps, double *val, int *ind, int max, double (*fun)(double))
{
double f[4], x[4], xx = 0.0, d, dl;
int i1, k = 0, count = 0, min, sw;
d = d0;
x[1] = x0;
f[1] = fun(x0);
*ind = -1;
while (count < max && *ind < 0) {
x[3] = x[1] + d;
f[3] = fun(x[3]);
while (k < max && f[3] <= f[1]) {
k++;
d *= 2.0;
x[0] = x[1];
f[0] = f[1];
x[1] = x[3];
f[1] = f[3];
x[3] = x[1] + d;
f[3] = fun(x[3]);
}
// 初期値が不適当
if (k >= max)
count = max;
else {
// 3点の選択
sw = 0;
if (k > 0) {
x[2] = x[3] - 0.5 * d;
f[2] = fun(x[2]);
min = -1;
for (i1 = 0; i1 < 4; i1++) {
if (min < 0 || f[i1] < f[min])
min = i1;
}
if (min >= 2) {
for (i1 = 0; i1 < 3; i1++) {
x[i1] = x[i1+1];
f[i1] = f[i1+1];
}
}
sw = 1;
}
else {
x[0] = x[1] - d0;
f[0] = fun(x[0]);
if (f[0] > f[1]) {
x[2] = x[3];
f[2] = f[3];
sw = 1;
}
else {
x[1] = x[0];
f[1] = f[0];
d0 = -d0;
d = 2.0 * d0;
k = 1;
}
}
// 収束?
if (sw > 0) {
count++;
dl = 0.5 * d * (f[2] - f[0]) / (f[0] - 2.0 * f[1] + f[2]);
xx = x[1] - dl;
*val = fun(xx);
if (fabs(dl) < eps)
*ind = count;
else {
k = 0;
d0 = 0.5 * d;
d = d0;
if (*val < f[1]) {
x[1] = xx;
f[1] = *val;
}
}
}
}
}
return xx;
}