/**********************************/
/* 微分方程式(ルンゲ・クッタ法) */
/* 例:d2x/dt+3dx/dt+2x=1 */
/* coded by Y.Suganuma */
/**********************************/
#include <stdio.h>
void snx(double, double *, double *);
double rkg(double, double, double *, double *, double **, int,
void (*)(double, double *, double *));
int main()
{
double time, h, *x, *dx, **g;
int i1, n = 2;
/*
初期設定
*/
x = new double [n];
dx = new double [n];
g = new double * [4];
for (i1 = 0; i1 < 4; i1++)
g[i1] = new double [n];
time = 0.0;
h = 0.01;
x[0] = 0.0;
x[1] = 0.0;
/*
計算と出力
*/
for (i1 = 0; i1 < 101; i1++) {
printf("time = %f, x = %f\n", time, x[0]);
time = rkg(time, h, x, dx, g, n, snx);
}
return 0;
}
/****************/
/* 微係数の計算 */
/****************/
void snx(double time, double *x, double *dx)
{
dx[0] = x[1];
dx[1] = -2.0 * x[0] - 3.0 * x[1] + 1.0;
}
/*******************************************/
/* ルンゲ・クッタ法 dx/dt=f(t,x) */
/* time : 現在の時間 */
/* h : 時間刻み幅 */
/* x : 現在の状態 */
/* dx : 微係数(f(t,x):snxで計算する)*/
/* g : 作業域(g[4][n]) */
/* n : 微分方程式の次数 */
/* snx : 微係数を計算する関数の名前 */
/* return : time+h */
/*******************************************/
double rkg(double time, double h, double *x, double *dx, double **g,
int n, void (*sub)(double, double *, double *))
{
int i1;
double h2;
h2 = 0.5 * h;
(*sub)(time, x, dx);
for (i1 = 0; i1 < n; i1++)
g[0][i1] = h * dx[i1];
time += h2;
for (i1 = 0; i1 < n; i1++)
g[1][i1] = x[i1] + 0.5 * g[0][i1];
(*sub)(time, g[1], dx);
for (i1 = 0; i1 < n; i1++)
g[1][i1] = h * dx[i1];
for (i1 = 0; i1 < n; i1++)
g[2][i1] = x[i1] + 0.5 * g[1][i1];
(*sub)(time, g[2], dx);
for (i1 = 0; i1 < n; i1++)
g[2][i1] = h * dx[i1];
time += h2;
for (i1 = 0; i1 < n; i1++)
g[3][i1] = x[i1] + g[2][i1];
(*sub)(time, g[3], dx);
for (i1 = 0; i1 < n; i1++)
g[3][i1] = h * dx[i1];
for (i1 = 0; i1 < n; i1++)
x[i1] = x[i1] + (g[0][i1] + 2.0 * g[1][i1] + 2.0 * g[2][i1] + g[3][i1]) / 6.0;
return time;
}