/****************************/
/* 最小二乗法(多項式近似) */
/* coded by Y.Suganuma */
/****************************/
#include <stdio.h>
#include <math.h>
int gauss(double **, int, int, double);
double *least(int, int, double *, double *);
int main()
{
double *x, *y, *z;
int i1, m, n;
scanf("%d %d", &m, &n); // 多項式の次数とデータの数
x = new double [n];
y = new double [n];
for (i1 = 0; i1 < n; i1++) // データ
scanf("%lf %lf", &x[i1], &y[i1]);
z = least(m, n, x, y);
if (z != NULL) {
printf("結果\n");
for (i1 = 0; i1 < m+1; i1++)
printf(" %d 次の係数 %f\n", m-i1, z[i1]);
delete [] z;
}
else
printf("***error 逆行列を求めることができませんでした\n");
delete [] x;
delete [] y;
return 0;
}
/******************************************/
/* 最初2乗法 */
/* m : 多項式の次数 */
/* n : データの数 */
/* x,y : データ */
/* return : 多項式の係数(高次から) */
/* エラーの場合はNULLを返す */
/******************************************/
double *least(int m, int n, double *x, double *y)
{
double **A, **w, *z, x1, x2;
int i1, i2, i3, sw;
m++;
z = new double [m];
w = new double * [m];
for (i1 = 0; i1 < m; i1++)
w[i1] = new double [m+1];
A = new double * [n];
for (i1 = 0; i1 < n; i1++) {
A[i1] = new double [m];
A[i1][m-2] = x[i1];
A[i1][m-1] = 1.0;
x1 = A[i1][m-2];
x2 = x1;
for (i2 = m-3; i2 >= 0; i2--) {
x2 *= x1;
A[i1][i2] = x2;
}
}
for (i1 = 0; i1 < m; i1++) {
for (i2 = 0; i2 < m; i2++) {
w[i1][i2] = 0.0;
for (i3 = 0; i3 < n; i3++)
w[i1][i2] += A[i3][i1] * A[i3][i2];
}
}
for (i1 = 0; i1 < m; i1++) {
w[i1][m] = 0.0;
for (i2 = 0; i2 < n; i2++)
w[i1][m] += A[i2][i1] * y[i2];
}
sw = gauss(w, m, 1, 1.0e-10);
if (sw == 0) {
for (i1 = 0; i1 < m; i1++)
z[i1] = w[i1][m];
}
else
z = NULL;
for (i1 = 0; i1 < n; i1++)
delete [] A[i1];
for (i1 = 0; i1 < m; i1++)
delete [] w[i1];
delete [] A;
delete [] w;
return z;
}
/*******************************************************/
/* 線形連立方程式を解く(逆行列を求める) */
/* w : 方程式の左辺及び右辺 */
/* n : 方程式の数 */
/* m : 方程式の右辺の列の数 */
/* eps : 正則性を判定する規準 */
/* return : =0 : 正常 */
/* =1 : 逆行列が存在しない */
/*******************************************************/
int gauss(double **w, int n, int m, double eps)
{
double y1, y2;
int ind = 0, nm, m1, m2, i1, i2, i3;
nm = n + m;
for (i1 = 0; i1 < n && ind == 0; i1++) {
y1 = .0;
m1 = i1 + 1;
m2 = 0;
for (i2 = i1; i2 < n; i2++) {
y2 = fabs(w[i2][i1]);
if (y1 < y2) {
y1 = y2;
m2 = i2;
}
}
if (y1 < eps)
ind = 1;
else {
for (i2 = i1; i2 < nm; i2++) {
y1 = w[i1][i2];
w[i1][i2] = w[m2][i2];
w[m2][i2] = y1;
}
y1 = 1.0 / w[i1][i1];
for (i2 = m1; i2 < nm; i2++)
w[i1][i2] *= y1;
for (i2 = 0; i2 < n; i2++) {
if (i2 != i1) {
for (i3 = m1; i3 < nm; i3++)
w[i2][i3] -= w[i2][i1] * w[i1][i3];
}
}
}
}
return(ind);
}
-----------データ例1(コメント部分を除いて下さい)---------
1 10 // 多項式の次数とデータの数
0 2.450 // 以下,(x, y)
1 2.615
2 3.276
3 3.294
4 3.778
5 4.009
6 3.920
7 4.267
8 4.805
9 5.656
-------------------------データ例2-------------------------
2 6
10 28.2
15 47.0
20 44.4
26 32.8
32 20.8
40 0.8