#*******************************/ # 共役勾配法による最小値の計算 */ # coded by Y.Suganuma */ #*******************************/ #********************************************/ # 与えられた点xから,dx方向へk*dxだけ進んだ */ # 点における関数値及び微係数を計算する */ #********************************************/ # 関数1 snx1 = Proc.new { |sw, k, x, dx| if sw == 0 w = Array.new(2) w[0] = x[0] + k * dx[0] w[1] = x[1] + k * dx[1] x1 = w[0] - 1.0 y1 = w[1] - 2.0 x1 * x1 + y1 * y1 else dx[0] = -2.0 * (x[0] - 1.0) dx[1] = -2.0 * (x[1] - 2.0) end } # 関数2 snx2 = Proc.new { |sw, k, x, dx| if sw == 0 w = Array.new(2) w[0] = x[0] + k * dx[0] w[1] = x[1] + k * dx[1] x1 = w[1] - w[0] * w[0] y1 = 1.0 - w[0] 100.0 * x1 * x1 + y1 * y1 else dx[0] = 400.0 * x[0] * (x[1] - x[0] * x[0]) + 2.0 * (1.0 - x[0]) dx[1] = -200.0 * (x[1] - x[0] * x[0]) end } # 関数3 snx3 = Proc.new { |sw, k, x, dx| if sw == 0 w = Array.new(2) w[0] = x[0] + k * dx[0] w[1] = x[1] + k * dx[1] x1 = 1.5 - w[0] * (1.0 - w[1]) y1 = 2.25 - w[0] * (1.0 - w[1] * w[1]) z1 = 2.625 - w[0] * (1.0 - w[1] * w[1] * w[1]) x1 * x1 + y1 * y1 + z1 * z1 else dx[0] = 2.0 * (1.0 - x[1]) * (1.5 - x[0] * (1.0 - x[1])) + 2.0 * (1.0 - x[1] * x[1]) * (2.25 - x[0] * (1.0 - x[1] * x[1])) + 2.0 * (1.0 - x[1] * x[1] * x[1]) * (2.625 - x[0] * (1.0 - x[1] * x[1] * x[1])) dx[1] = -2.0 * x[0] * (1.5 - x[0] * (1.0 - x[1])) - 4.0 * x[0] * x[1] * (2.25 - x[0] * (1.0 - x[1] * x[1])) - 6.0 * x[0] * x[1] * x[1] * (2.625 - x[0] * (1.0 - x[1] * x[1] * x[1])) end } #***************************************************************/ # 黄金分割法(与えられた方向での最小値) */ # a,b : 初期区間 a < b */ # eps : 許容誤差 */ # val : 関数値 */ # ind : 計算状況 */ # >= 0 : 正常終了(収束回数) */ # = -1 : 収束せず */ # max : 最大試行回数 */ # w : 位置 */ # dw : 傾きの成分 */ # snx : 関数値を計算する関数の名前 */ # return : 結果(w+y*dwのy) */ #***************************************************************/ def gold(a, b, eps, val, ind, max, w, dw, &snx) # 初期設定 tau = (Math.sqrt(5.0) - 1.0) / 2.0 x = 0.0 count = 0 ind[0] = -1 x1 = b - tau * (b - a) x2 = a + tau * (b - a) f1 = snx.call(0, x1, w, dw) f2 = snx.call(0, x2, w, dw) # 計算 while count < max && ind[0] < 0 count += 1 if f2 > f1 if (b-a).abs() < eps ind[0] = 0 x = x1 val[0] = f1 else b = x2 x2 = x1 x1 = a + (1.0 - tau) * (b - a) f2 = f1 f1 = snx.call(0, x1, w, dw) end else if (b-a).abs() < eps ind[0] = 0 x = x2 val[0] = f2 f1 = f2 else a = x1 x1 = x2 x2 = b - (1.0 - tau) * (b - a) f1 = f2 f2 = snx.call(0, x2, w, dw) end end end # 収束した場合の処理 if ind[0] == 0 ind[0] = count fa = snx.call(0, a, w, dw) fb = snx.call(0, b, w, dw) if fb < fa a = b fa = fb end if fa < f1 x = a val[0] = fa end end return x end #*******************************************************/ # 共役勾配法 */ # opt_1 : =0 : 1次元最適化を行わない */ # =1 : 1次元最適化を行う */ # max : 最大繰り返し回数 */ # n : 次元 */ # eps : 収束判定条件 */ # step : きざみ幅 */ # y : 最小値 */ # x : x(初期値と答え) */ # dx : 関数の微分値 */ # snx : 関数値とその微分を計算する関数名 */ # (微分は,その符号を変える) */ # return : >=0 : 正常終了(収束回数) */ # =-1 : 収束せず */ # =-2 : 1次元最適化の区間が求まらない */ # =-3 : 黄金分割法が失敗 */ #*******************************************************/ def conjugate(opt_1, max, n, eps, step, y, x, dx, &snx) b = 0.0 s1 = 1.0 count = 0 sw = 0 y2 = Array.new(1) sw1 = Array.new(1) g = Array.new(n) y1 = snx.call(0, 0.0, x, dx) while count < max && sw == 0 # 傾きの計算 snx.call(1, 0.0, x, g) # 傾きのチェック s2 = 0.0 for i1 in 0 ... n s2 += g[i1] * g[i1] end # 収束していない if Math.sqrt(s2) > eps # 方向の計算 count += 1 if count%n == 1 b = 0.0 else b = s2 / s1 end for i1 in 0 ... n dx[i1] = g[i1] + b * dx[i1] end # 1次元最適化を行わない if opt_1 == 0 # 新しい点 for i1 in 0 ... n x[i1] += step * dx[i1] end # 新しい関数値 y2[0] = snx.call(0, 0.0, x, dx) # 関数値の変化が大きい if (y2[0]-y1).abs() > eps y1 = y2[0] s1 = s2 # 収束(関数値の変化<eps) else sw = count y[0] = y2[0] end # 1次元最適化を行う else # 区間を決める sw1[0] = 0 f1 = y1 sp = step f2 = snx.call(0, sp, x, dx) if f2 > f1 sp = -step end for i1 in 0 ... max f2 = snx.call(0, sp, x, dx) if f2 > f1 sw1[0] = 1 break else sp *= 2.0 f1 = f2 end end # 区間が求まらない if sw1[0] == 0 sw = -2 # 区間が求まった else # 黄金分割法 k = gold(0.0, sp, eps, y2, sw1, max, x, dx, &snx) # 黄金分割法が失敗 if sw1[0] < 0 sw = -3 # 黄金分割法が成功 else # 新しい点 for i1 in 0 ... n x[i1] += k * dx[i1] end # 関数値の変化が大きい if (y1-y2[0]).abs() > eps y1 = y2[0] s1 = s2 # 収束(関数値の変化<eps) else sw = count y[0] = y2[0] end end end end # 収束(傾き<eps) else sw = count y[0] = y1 end end if sw == 0 sw = -1 end return sw end # データの入力 str = gets() a = str.split(" ") fun = Integer(a[1]) n = Integer(a[3]) max = Integer(a[5]) opt_1 = Integer(a[7]) str = gets() a = str.split(" ") eps = Float(a[1]) step = Float(a[3]) x = Array.new(n) dx = Array.new(n) y = Array.new(1) sw = 0 str = gets() a = str.split(" ") for i1 in 0 ... n x[i1] = Float(a[i1+1]) dx[i1] = 0.0 end # 実行 case fun when 1 sw = conjugate(opt_1, max, n, eps, step, y, x, dx, &snx1) when 2 sw = conjugate(opt_1, max, n, eps, step, y, x, dx, &snx2) when 3 sw = conjugate(opt_1, max, n, eps, step, y, x, dx, &snx3) end # 結果の出力 if sw < 0 printf(" 収束しませんでした!") case sw when -1 printf("(収束回数)\n") when -2 printf("(1次元最適化の区間)\n") when -3 printf("(黄金分割法)\n") end else printf(" 結果=") for i1 in 0 ... n printf("%f ", x[i1]) end printf(" 最小値=%f 回数=%d\n", y[0], sw) end