############################################ # 二分法による exp(x)-3x=0 の根 # coded by Y.Suganuma ############################################ ############################################ # 二分法による非線形方程式(f(x)=0)の解 # x1,x2 : 初期値 # eps1 : 終了条件1(|x(k+1)-x(k)|<eps1) # eps2 : 終了条件2(|f(x(k))|<eps2) # max : 最大試行回数 # ind : 実際の試行回数 # (負の時は解を得ることができなかった) # fn : f(x)を計算する関数名 # return : 解 # coded by Y.Suganuma ############################################ def bisection(x1, x2, eps1, eps2, max, ind, &fn) x0 = 0.0 f1 = fn.call(x1) f2 = fn.call(x2) if f1*f2 > 0.0 ind[0] = -1 else ind[0] = 0 if f1*f2 == 0.0 if f1 == 0.0 x0 = x1 else x0 = x2 end else sw = 0 while sw == 0 && ind[0] >= 0 sw = 1 ind[0] += 1 x0 = 0.5 * (x1 + x2) f0 = fn.call(x0) if f0.abs() > eps2 if ind[0] <= max if (x1-x2).abs() > eps1 && (x1-x2).abs() > eps1*x2.abs() sw = 0 if f0*f1 < 0.0 x2 = x0 f2 = f0 else x1 = x0 f1 = f0 end end else ind[0] = -1 end end end end end return x0 end ################ # 関数値の計算 # ################ snx = Proc.new { |x| Math.exp(x) - 3.0 * x } # データの設定 eps1 = 1.0e-10 eps2 = 1.0e-10 max = 100 x1 = 0.0 x2 = 1.0 ind = [0] # 実行と結果 x = bisection(x1, x2, eps1, eps2, max, ind, &snx) print(" ind=", ind[0], " x=", x, " f= ", snx.call(x), "\n")