#***********************************/
# 代数方程式の解(ベアストウ法) */
# 例:(x+1)(x-2)(x-3)(x2+x+1) */
# =x5-3x4-2x3+3x2+7x+6=0 */
# coded by Y.Suganuma */
#***********************************/
#************************************************/
# 実係数代数方程式の解(ベアストウ法) */
# n : 次数 */
# ct : 最大繰り返し回数 */
# eps : 収束判定条件 */
# p0, q0 : x2+px+qにおけるp,qの初期値 */
# a : 係数(最高次から与え,値は変化する) */
# b,c : 作業域((n+1)次の配列) */
# rl, im : 結果の実部と虚部 */
# k : 結果の位置 */
# return : =0 : 正常 */
# =1 : 収束せず */
# coded by Y.Suganuma */
#************************************************/
def Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, k)
# 初期設定
p1 = p0
p2 = 0.0
q1 = q0
q2 = 0.0
ind = 0
count = 0
#
# 1次の場合
#
if n == 1
if a[0].abs() < eps
ind = 1
else
rl[k] = -a[1] / a[0]
im[k] = 0.0
end
#
# 2次の場合
#
elsif n == 2
# 1次式
if a[0].abs() < eps
if a[1].abs() < eps
ind = 1
else
rl[k] = -a[2] / a[1]
im[k] = 0.0
end
# 2次式
else
d = a[1] * a[1] - 4.0 * a[0] * a[2]
if d < 0.0 # 虚数
d = Math.sqrt(-d)
a[0] *= 2.0
rl[k] = -a[1] / a[0]
rl[k+1] = -a[1] / a[0]
im[k] = d / a[0]
im[k+1] = -im[0]
else # 実数
d = Math.sqrt(d)
a[0] = 1.0 / (2.0 * a[0])
rl[k] = a[0] * (-a[1] + d)
rl[k+1] = a[0] * (-a[1] - d)
im[k] = 0.0
im[k+1] = 0.0
end
end
# 3次以上の場合
else
# 因数分解
ind = 1
while ind > 0 && count <= ct
for i1 in 0 ... n+1
if i1 == 0
b[i1] = a[i1]
elsif i1 == 1
b[i1] = a[i1] - p1 * b[i1-1]
else
b[i1] = a[i1] - p1 * b[i1-1] - q1 * b[i1-2]
end
end
for i1 in 0 ... n+1
if i1 == 0
c[i1] = b[i1]
elsif i1 == 1
c[i1] = b[i1] - p1 * c[i1-1]
else
c[i1] = b[i1] - p1 * c[i1-1] - q1 * c[i1-2]
end
end
d = c[n-2] * c[n-2] - c[n-3] * (c[n-1] - b[n-1])
if d.abs() < eps
return ind
else
dp = (b[n-1] * c[n-2] - b[n] * c[n-3]) / d
dq = (b[n] * c[n-2] - b[n-1] * (c[n-1] - b[n-1])) / d
p2 = p1 + dp
q2 = q1 + dq
if dp.abs() < eps && dq.abs() < eps
ind = 0
else
count += 1
p1 = p2
q1 = q2
end
end
end
if ind == 0
# 2次方程式を解く
d = p2 * p2 - 4.0 * q2
if d < 0.0 # 虚数
d = Math.sqrt(-d)
rl[k] = -0.5 * p2
rl[k+1] = -0.5 * p2
im[k] = 0.5 * d
im[k+1] = -im[k]
else # 実数
d = Math.sqrt(d)
rl[k] = 0.5 * (-p2 + d)
rl[k+1] = 0.5 * (-p2 - d)
im[k] = 0.0
im[k+1] = 0.0
end
# 残りの方程式を解く
n -= 2
for i1 in 0 ... n+1
a[i1] = b[i1]
end
ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, k+2)
end
end
return ind
end
# データの設定
ct = 1000
eps = 1.0e-10
p0 = 0.0
q0 = 0.0
n = 5
a = [1.0, -3.0, -2.0, 3.0, 7.0, 6.0]
b = Array.new(n+1)
c = Array.new(n+1)
rl = Array.new(n)
im = Array.new(n)
# 計算
ind = Bairstow(n, ct, eps, p0, q0, a, b, c, rl, im, 0)
# 出力
if ind > 0
printf("収束しませんでした!\n")
else
for i1 in 0 ... n
printf(" %f i %f\n", rl[i1], im[i1])
end
end