# -*- coding: UTF-8 -*-
from math import *
import numpy as np
################################################
# 標準正規分布N(0,1)の計算(P(X = x), P(X < x))
# w : P(X = x)
# return : P(X < x)
################################################
def normal(x, w) :
# 確率密度関数(定義式)
w[0] = exp(-0.5 * x * x) / sqrt(2.0*pi)
# 確率分布関数(近似式を使用)
y = 0.70710678118654 * abs(x)
z = 1.0 + y * (0.0705230784 + y * (0.0422820123 + y * (0.0092705272 + y * (0.0001520143 + y * (0.0002765672 + y * 0.0000430638)))))
P = 1.0 - z ** (-16.0)
if x < 0.0 :
P = 0.5 - 0.5 * P
else :
P = 0.5 + 0.5 * P
return P
############################################
# 二分法による非線形方程式(f(x)=0)の解
# fn : f(x)を計算する関数名
# x1,x2 : 初期値
# eps1 : 終了条件1(|x(k+1)-x(k)|<eps1)
# eps2 : 終了条件2(|f(x(k))|<eps2)
# max : 最大試行回数
# ind : 実際の試行回数
# (負の時は解を得ることができなかった)
# return : 解
# coded by Y.Suganuma
############################################
def bisection(fn, x1, x2, eps1, eps2, max, ind) :
x0 = 0.0
f1 = fn(x1)
f2 = fn(x2)
if f1*f2 > 0.0 :
ind[0] = -1
else :
ind[0] = 0
if f1*f2 == 0.0 :
if f1 == 0.0 :
x0 = x1
else :
x0 = x2
else :
sw = 0
while sw == 0 and ind[0] >= 0 :
sw = 1
ind[0] += 1
x0 = 0.5 * (x1 + x2)
f0 = fn(x0)
if abs(f0) > eps2 :
if ind[0] <= max :
if abs(x1-x2) > eps1 and abs(x1-x2) > eps1*abs(x2) :
sw = 0
if f0*f1 < 0.0 :
x2 = x0
f2 = f0
else :
x1 = x0
f1 = f0
else :
ind[0] = -1
return x0
----------------------------------
# -*- coding: UTF-8 -*-
import numpy as np
import sys
from math import *
from function import normal, bisection
############################
# 正規分布の計算
# coded by Y.Suganuma
############################
############################
# 1.0 - p - P(X>x)(関数値)
############################
def normal_f(x) :
y = np.empty(1, np.float)
return 1.0 - p - normal(x, y)
################################################################
# 標準正規分布N(0,1)のp%値(P(X > u) = 0.01p)(二分法を使用)
# ind : >= 0 : normal(収束回数)
# = -1 : 収束しなかった
################################################################
def p_normal(ind) :
u = bisection(normal_f, -7.0, 7.0, 1.0e-6, 1.0e-10, 100, ind);
return u;
# 密度関数と分布関数の値
s = input("平均値は? ")
mean = float(s)
s = input("標準偏差は? ")
sd = float(s)
print("目的とする結果は? ")
print(" =0 : 確率の計算( P(X = x) 及び P(X < x) の値)")
s = input(" =1 : p%値( P(X > u) = 0.01p となるuの値) ")
sw = int(s)
pr = np.empty(1, np.float)
if sw == 0 :
s = input("グラフ出力?(=1: yes, =0: no) ")
sw = int(s)
if sw == 0 :
# 密度関数と分布関数の値
s = input(" データは? ")
x = float(s)
xx = (x - mean) / sd
f = normal(xx, pr)
print("P(X = " + str(x) + ") = " + str(pr[0]) + ", P( X < " + str(x) + ") = " + str(f))
# グラフ出力
else :
file1 = input(" 密度関数のファイル名は? ")
file2 = input(" 分布関数のファイル名は? ")
s = input(" データの下限は? ")
x1 = float(s)
s = input(" データの上限は? ")
x2 = float(s)
s = input(" 刻み幅は? ")
h = float(s)
out1 = open(file1, "w")
out2 = open(file2, "w")
x = x1
while x < x2+0.5*h :
xx = (x - mean) / sd
f = normal(xx, pr)
out1.write(str(x) + " " + str(pr[0]) + "\n")
out2.write(str(x) + " " + str(f) + "\n")
x += h
out1.close()
out2.close()
# %値
else :
s = input("%の値は? ")
x = float(s)
p = 0.01 * x
if p < 1.0e-7 :
print(str(x) + "%値 = ∞")
elif (1.0-p)< 1.0e-7 :
print(str(x) + "%値 = -∞")
else :
ok = np.empty(1, np.int)
y = sd * p_normal(ok) + mean
print(str(x) + "%値 = " + str(y) + " 収束 " + str(ok[0]))